Stats: Data and Models, Global Edition

Lýsing:
For courses in Introductory Statistics. Encourages statistical thinking using technology, innovative methods, and a sense of humour Inspired by the 2016 GAISE Report revision, Stats: Data and Models, 5th Edition by De Veaux, Velleman, and Bock uses innovative strategies to help students think critically about data, while maintaining the book's core concepts, coverage, and most importantly, readability.
The authors make it easier for instructors to teach and for students to understand more complicated statistical concepts later in the course (such as the Central Limit Theorem). In addition, students get more exposure to large data sets and multivariate thinking, which better prepares them to be critical consumers of statistics in the 21st century. The 5th Edition’s approach to teaching Stats: Data and Models is revolutionary, yet it retains the book's lively tone and hallmark pedagogical features such as its Think/Show/Tell Step-by-Step Examples.
The full text downloaded to your computer With eBooks you can: search for key concepts, words and phrases make highlights and notes as you study share your notes with friends eBooks are downloaded to your computer and accessible either offline through the Bookshelf (available as a free download), available online and also via the iPad and Android apps. Upon purchase, you'll gain instant access to this eBook.
Annað
- Höfundar: Richard D. De Veaux, Paul F. Velleman, David E. Bock
- Útgáfa:5
- Útgáfudagur: 2021-01-22
- Hægt að prenta út 2 bls.
- Hægt að afrita 2 bls.
- Format:Page Fidelity
- ISBN 13: 9781292362328
- Print ISBN: 9781292362212
- ISBN 10: 1292362324
Efnisyfirlit
- Get the Most Out of MyLab Statistics
- Title Page
- Copyright
- Dedication
- Meet the Authors
- Table of Contents
- Preface
- MyLab Statistics for Stats: Data & Models, 5e
- Resources for Success
- Acknowledgments
- Index of Applications
- Part I: Exploring and Understanding Data
- 1. Stats Starts Here
- 1.1 What Is Statistics?
- 1.2 Data
- 1.3 Variables
- 1.4 Models
- 2. Displaying and Describing Data
- 2.1 Summarizing and Displaying a Categorical Variable
- 2.2 Displaying a Quantitative Variable
- 2.3 Shape
- 2.4 Center
- 2.5 Spread
- 3. Relationships Between Categorical Variables—Contingency Tables
- 3.1 Contingency Tables
- 3.2 Conditional Distributions
- 3.3 Displaying Contingency Tables
- 3.4 Three Categorical Variables
- 4. Understanding and Comparing Distributions
- 4.1 Displays for Comparing Groups
- 4.2 Outliers
- 4.3 Timeplots: Order, Please!
- 4.4 Re-Expressing Data: A First Look
- 5. The Standard Deviation as a Ruler and the Normal Model
- 5.1 Using the Standard Deviation to Standardize Values
- 5.2 Shifting and Scaling
- 5.3 Normal Models
- 5.4 Working with Normal Percentiles
- 5.5 Normal Probability Plots
- Review of Part I: Exploring and Understanding Data
- 1. Stats Starts Here
- Part II: Exploring Relationships Between Variables
- 6. Scatterplots, Association, and Correlation
- 6.1 Scatterplots
- 6.2 Correlation
- 6.3 Warning: Correlation ≠ Causation
- *6.4 Straightening Scatterplots
- 7. Linear Regression
- 7.1 Least Squares: The Line of “Best Fit”
- 7.2 The Linear Model
- 7.3 Finding the Least Squares Line
- 7.4 Regression to the Mean
- 7.5 Examining the Residuals
- 7.6 R2—The Variation Accounted for by the Model
- 7.7 Regression Assumptions and Conditions
- 8. Regression Wisdom
- 8.1 Examining Residuals
- 8.2 Extrapolation: Reaching Beyond the Data
- 8.3 Outliers, Leverage, and Influence
- 8.4 Lurking Variables and Causation
- 8.5 Working with Summary Values
- *8.6 Straightening Scatterplots—The Three Goals
- *8.7 Finding a Good Re-Expression
- 9. Multiple Regression
- 9.1 What Is Multiple Regression?
- 9.2 Interpreting Multiple Regression Coefficients
- 9.3 The Multiple Regression Model—Assumptions and Conditions
- 9.4 Partial Regression Plots
- *9.5 Indicator Variables
- Review of Part II: Exploring Relationships Between Variables
- 6. Scatterplots, Association, and Correlation
- Part III: Gathering Data
- 10. Sample Surveys
- 10.1 The Three Big Ideas of Sampling
- 10.2 Populations and Parameters
- 10.3 Simple Random Samples
- 10.4 Other Sampling Designs
- 10.5 From the Population to the Sample: You Can’t Always Get What You Want
- 10.6 The Valid Survey
- 10.7 Common Sampling Mistakes, or How to Sample Badly
- 11. Experiments and Observational Studies
- 11.1 Observational Studies
- 11.2 Randomized, Comparative Experiments
- 11.3 The Four Principles of Experimental Design
- 11.4 Control Groups
- 11.5 Blocking
- 11.6 Confounding
- Review of Part III: Gathering Data
- 10. Sample Surveys
- Part IV: Randomness and Probability
- 12. From Randomness to Probability
- 12.1 Random Phenomena
- 12.2 Modeling Probability
- 12.3 Formal Probability
- 13. Probability Rules!
- 13.1 The General Addition Rule
- 13.2 Conditional Probability and the General Multiplication Rule
- 13.3 Independence
- 13.4 Picturing Probability: Tables, Venn Diagrams, and Trees
- 13.5 Reversing the Conditioning and Bayes’ Rule
- 14. Random Variables
- 14.1 Center: The Expected Value
- 14.2 Spread: The Standard Deviation
- 14.3 Shifting and Combining Random Variables
- 14.4 Continuous Random Variables
- 15. Probability Models
- 15.1 Bernoulli Trials
- 15.2 The Geometric Model
- 15.3 The Binomial Model
- 15.4 Approximating the Binomial with a Normal Model
- *15.5 The Continuity Correction
- 15.6 The Poisson Model
- 15.7 Other Continuous Random Variables: The Uniform and the Exponential
- Review of Part IV: Randomness and Probability
- 12. From Randomness to Probability
- Part V: Inference for One Parameter
- 16. Sampling Distribution Models and Confidence Intervals for Proportions
- 16.1 The Sampling Distribution Model for a Proportion
- 16.2 When Does the Normal Model Work? Assumptions and Conditions
- 16.3 A Confidence Interval for a Proportion
- 16.4 Interpreting Confidence Intervals: What Does 95% Confidence Really Mean?
- 16.5 Margin of Error: Certainty vs. Precision
- *16.6 Choosing the Sample Size
- 17. Confidence Intervals for Means
- 17.1 The Central Limit Theorem
- 17.2 A Confidence Interval for the Mean
- 17.3 Interpreting Confidence Intervals
- *17.4 Picking Our Interval up by Our Bootstraps
- 17.5 Thoughts About Confidence Intervals
- 18. Testing Hypotheses
- 18.1 Hypotheses
- 18.2 P-Values
- 18.3 The Reasoning of Hypothesis Testing
- 18.4 A Hypothesis Test for the Mean
- 18.5 Intervals and Tests
- 18.6 P-Values and Decisions: What to Tell About a Hypothesis Test
- 19. More About Tests and Intervals
- 19.1 Interpreting P-Values
- 19.2 Alpha Levels and Critical Values
- 19.3 Practical vs. Statistical Significance
- 19.4 Errors
- Review of Part V: Inference for One Parameter
- 16. Sampling Distribution Models and Confidence Intervals for Proportions
- Part VI: Inference for Relationships
- 20. Comparing Groups
- 20.1 A Confidence Interval for the Difference Between Two Proportions
- 20.2 Assumptions and Conditions for Comparing Proportions
- 20.3 The Two-Sample z-Test: Testing the Difference Between Proportions
- 20.4 A Confidence Interval for the Difference Between Two Means
- 20.5 The Two-Sample t-Test: Testing for the Difference Between Two Means
- *20.6 Randomization Tests and Confidence Intervals for Two Means
- *20.7 Pooling
- *20.8 The Standard Deviation of a Difference
- 21. Paired Samples and Blocks
- 21.1 Paired Data
- 21.2 The Paired t-Test
- 21.3 Confidence Intervals for Matched Pairs
- 21.4 Blocking
- 22. Comparing Counts
- 22.1 Goodness-of-Fit Tests
- 22.2 Chi-Square Test of Homogeneity
- 22.3 Examining the Residuals
- 22.4 Chi-Square Test of Independence
- 23. Inferences for Regression
- 23.1 The Regression Model
- 23.2 Assumptions and Conditions
- 23.3 Regression Inference and Intuition
- 23.4 The Regression Table
- 23.5 Multiple Regression Inference
- 23.6 Confidence and Prediction Intervals
- *23.7 Logistic Regression
- *23.8 More About Regression
- Review of Part VI: Inference for Relationships
- 20. Comparing Groups
- Part VII: Inference When Variables Are Related
- 24. Multiple Regression Wisdom
- 24.1 Cleaning and Formatting Data
- 24.2 Diagnosing Regression Models: Looking at the Cases
- 24.3 Building Multiple Regression Models
- 25. Analysis of Variance
- 25.1 Testing Whether the Means of Several Groups Are Equal
- 25.2 The ANOVA Table
- 25.3 Assumptions and Conditions
- 25.4 Comparing Means
- 25.5 ANOVA on Observational Data
- 26. Multifactor Analysis of Variance
- 26.1 A Two-Factor ANOVA Model
- 26.2 Assumptions and Conditions
- 26.3 Interactions
- 27. Introduction to Statistical Learning and Data Science
- 27.1 Data Science and Big Data
- 27.2 The Data Mining Process
- 27.3 Data Mining Algorithms: A Sample
- 27.4 Models Built from Combining Other Models
- 27.5 Comparing Models
- 27.6 Summary
- Review of Part VII: Inference When Variables Are Related
- Cumulative Review Exercises
- 24. Multiple Regression Wisdom
- Appendixes
- Appendix A. Answers
- Appendix B. Credits
- Appendix C. Index
- Appendix D. Tables and Selected Formulas
UM RAFBÆKUR Á HEIMKAUP.IS
Bókahillan þín er þitt svæði og þar eru bækurnar þínar geymdar. Þú kemst í bókahilluna þína hvar og hvenær sem er í tölvu eða snjalltæki. Einfalt og þægilegt!
Rafbók til eignar
Rafbók til eignar þarf að hlaða niður á þau tæki sem þú vilt nota innan eins árs frá því bókin er keypt.
Þú kemst í bækurnar hvar sem er
Þú getur nálgast allar raf(skóla)bækurnar þínar á einu augabragði, hvar og hvenær sem er í bókahillunni þinni. Engin taska, enginn kyndill og ekkert vesen (hvað þá yfirvigt).
Auðvelt að fletta og leita
Þú getur flakkað milli síðna og kafla eins og þér hentar best og farið beint í ákveðna kafla úr efnisyfirlitinu. Í leitinni finnur þú orð, kafla eða síður í einum smelli.
Glósur og yfirstrikanir
Þú getur auðkennt textabrot með mismunandi litum og skrifað glósur að vild í rafbókina. Þú getur jafnvel séð glósur og yfirstrikanir hjá bekkjarsystkinum og kennara ef þeir leyfa það. Allt á einum stað.
Hvað viltu sjá? / Þú ræður hvernig síðan lítur út
Þú lagar síðuna að þínum þörfum. Stækkaðu eða minnkaðu myndir og texta með multi-level zoom til að sjá síðuna eins og þér hentar best í þínu námi.
Fleiri góðir kostir
- Þú getur prentað síður úr bókinni (innan þeirra marka sem útgefandinn setur)
- Möguleiki á tengingu við annað stafrænt og gagnvirkt efni, svo sem myndbönd eða spurningar úr efninu
- Auðvelt að afrita og líma efni/texta fyrir t.d. heimaverkefni eða ritgerðir
- Styður tækni sem hjálpar nemendum með sjón- eða heyrnarskerðingu
- Gerð : 208
- Höfundur : 9715
- Útgáfuár : 2021
- Leyfi : 380