
Lýsing:
The fourth edition of this successful text provides an introduction to probability and random processes, with many practical applications. It is aimed at mathematics undergraduates and postgraduates, and has four main aims. US BL To provide a thorough but straightforward account of basic probability theory, giving the reader a natural feel for the subject unburdened by oppressive technicalities. BE BL To discuss important random processes in depth with many examples.
BE BL To cover a range of topics that are significant and interesting but less routine. BE BL To impart to the beginner some flavour of advanced work. BE UE OP The book begins with the basic ideas common to most undergraduate courses in mathematics, statistics, and science. It ends with material usually found at graduate level, for example, Markov processes, (including Markov chain Monte Carlo), martingales, queues, diffusions, (including stochastic calculus with Itô's formula), renewals, stationary processes (including the ergodic theorem), and option pricing in mathematical finance using the Black-Scholes formula.
Further, in this new revised fourth edition, there are sections on coupling from the past, Lévy processes, self-similarity and stability, time changes, and the holding-time/jump-chain construction of continuous-time Markov chains. Finally, the number of exercises and problems has been increased by around 300 to a total of about 1300, and many of the existing exercises have been refreshed by additional parts.
Annað
- Höfundar: Geoffrey Grimmett, David Stirzaker
- Útgáfa:4
- Útgáfudagur: 2020-07-03
- Hægt að prenta út 2 bls.
- Hægt að afrita 2 bls.
- Format:Page Fidelity
- ISBN 13: 9780192586865
- Print ISBN: 9780198847595
- ISBN 10: 0192586866
Efnisyfirlit
- Probability and Random Processes
- Copyright
- Epigraph
- Preface to the Fourth Edition
- Contents
- 1 Events and their probabilities
- 1.1 Introduction
- 1.2 Events as sets
- 1.3 Probability
- 1.4 Conditional probability
- 1.5 Independence
- 1.6 Completeness and product spaces
- 1.7 Worked examples
- 1.8 Problems
- 2 Random variables and their distributions
- 2.1 Random variables
- 2.2 The law of averages
- 2.3 Discrete and continuous variables
- 2.4 Worked examples
- 2.5 Random vectors
- 2.6 Monte Carlo simulation
- 2.7 Problems
- 3 Discrete random variables
- 3.1 Probability mass functions
- 3.2 Independence
- 3.3 Expectation
- 3.4 Indicators and matching
- 3.5 Examples of discrete variables
- 3.6 Dependence
- 3.7 Conditional distributions and conditional expectation
- 3.8 Sums of random variables
- 3.9 Simple random walk
- 3.10 Random walk: counting sample paths
- 3.11 Problems
- 4 Continuous random variables
- 4.1 Probability density functions
- 4.2 Independence
- 4.3 Expectation
- 4.4 Examples of continuous variables
- 4.5 Dependence
- 4.6 Conditional distributions and conditional expectation
- 4.7 Functions of random variables
- 4.8 Sums of random variables
- 4.9 Multivariate normal distribution
- 4.10 Distributions arising from the normal distribution
- 4.11 Sampling from a distribution
- 4.12 Coupling and Poisson approximation
- 4.13 Geometrical probability
- 4.14 Problems
- 5 Generating functions and their applications
- 5.1 Generating functions
- 5.2 Some applications
- 5.3 Random walk
- 5.4 Branching processes
- 5.5 Age-dependent branching processes
- 5.6 Expectation revisited
- 5.7 Characteristic functions
- 5.8 Examples of characteristic functions
- 5.9 Inversion and continuity theorems
- 5.10 Two limit theorems
- 5.11 Large deviations
- 5.12 Problems
- 6 Markov chains
- 6.1 Markov processes
- 6.2 Classification of states
- 6.3 Classification of chains
- 6.4 Stationary distributions and the limit theorem
- 6.5 Reversibility
- 6.6 Chains with finitely many states
- 6.7 Branching processes revisited
- 6.8 Birth processes and the Poisson process
- 6.9 Continuous-time Markov chains
- 6.10 Kolmogorov equations and the limit theorem
- 6.11 Birth–death processes and imbedding
- 6.12 Special processes
- 6.13 Spatial Poisson processes
- 6.14 Markov chain Monte Carlo
- 6.15 Problems
- 7 Convergence of random variables
- 7.1 Introduction
- 7.2 Modes of convergence
- 7.3 Some ancillary results
- 7.4 Laws of large numbers
- 7.5 The strong law
- 7.6 The law of the iterated logarithm
- 7.7 Martingales
- 7.8 Martingale convergence theorem
- 7.9 Prediction and conditional expectation
- 7.10 Uniform integrability
- 7.11 Problems
- 8 Random processes
- 8.1 Introduction
- 8.2 Stationary processes
- 8.3 Renewal processes
- 8.4 Queues
- 8.5 The Wiener process
- 8.6 L´evy processes and subordinators
- 8.7 Self-similarity and stability
- 8.8 Time changes
- 8.9 Existence of processes
- 8.10 Problems
- 9 Stationary processes
- 9.1 Introduction
- 9.2 Linear prediction
- 9.3 Autocovariances and spectra
- 9.4 Stochastic integration and the spectral representation
- 9.5 The ergodic theorem
- 9.6 Gaussian processes
- 9.7 Problems
- 10 Renewals
- 10.1 The renewal equation
- 10.2 Limit theorems
- 10.3 Excess life
- 10.4 Applications
- 10.5 Renewal–reward processes
- 10.6 Problems
- 11 Queues
- 11.1 Single-server queues
- 11.2 M/M/1
- 11.3 M/G/1
- 11.4 G/M/1
- 11.5 G/G/1
- 11.6 Heavy traffic
- 11.7 Networks of queues
- 11.8 Problems
- 12 Martingales
- 12.1 Introduction
- 12.2 Martingale differences and Hoeffding’s inequality
- 12.3 Crossings and convergence
- 12.4 Stopping times
- 12.5 Optional stopping
- 12.6 The maximal inequality
- 12.7 Backward martingales and continuous-time martingales
- 12.8 Some examples
- 12.9 Problems
- 13 Diffusion processes
- 13.1 Introduction
- 13.2 Brownian motion
- 13.3 Diffusion processes
- 13.4 First passage times
- 13.5 Barriers
- 13.6 Excursions and the Brownian bridge
- 13.7 Stochastic calculus
- 13.8 The Itˆo integral
- 13.9 Itˆo’s formula
- 13.10 Option pricing
- 13.11 Passage probabilities and potentials
- 13.12 Problems
- Appendix I Foundations and notation
- (A) Basic notation
- (B) Sets and counting
- (C) Vectors and matrices
- (D) Convergence
- (E) Complex analysis
- (F) Transforms
- (G) Difference equations
- (H) Partial differential equations
- Appendix II Further reading
- Appendix III History and varieties of probability
- History
- Varieties
- Appendix IV John Arbuthnot’s Preface to Of the laws of chance (1692)
- Appendix V Table of distributions
- Appendix VI Chronology
- Bibliography
- Notation
- Index
UM RAFBÆKUR Á HEIMKAUP.IS
Bókahillan þín er þitt svæði og þar eru bækurnar þínar geymdar. Þú kemst í bókahilluna þína hvar og hvenær sem er í tölvu eða snjalltæki. Einfalt og þægilegt!Rafbók til eignar
Rafbók til eignar þarf að hlaða niður á þau tæki sem þú vilt nota innan eins árs frá því bókin er keypt.
Þú kemst í bækurnar hvar sem er
Þú getur nálgast allar raf(skóla)bækurnar þínar á einu augabragði, hvar og hvenær sem er í bókahillunni þinni. Engin taska, enginn kyndill og ekkert vesen (hvað þá yfirvigt).
Auðvelt að fletta og leita
Þú getur flakkað milli síðna og kafla eins og þér hentar best og farið beint í ákveðna kafla úr efnisyfirlitinu. Í leitinni finnur þú orð, kafla eða síður í einum smelli.
Glósur og yfirstrikanir
Þú getur auðkennt textabrot með mismunandi litum og skrifað glósur að vild í rafbókina. Þú getur jafnvel séð glósur og yfirstrikanir hjá bekkjarsystkinum og kennara ef þeir leyfa það. Allt á einum stað.
Hvað viltu sjá? / Þú ræður hvernig síðan lítur út
Þú lagar síðuna að þínum þörfum. Stækkaðu eða minnkaðu myndir og texta með multi-level zoom til að sjá síðuna eins og þér hentar best í þínu námi.
Fleiri góðir kostir
- Þú getur prentað síður úr bókinni (innan þeirra marka sem útgefandinn setur)
- Möguleiki á tengingu við annað stafrænt og gagnvirkt efni, svo sem myndbönd eða spurningar úr efninu
- Auðvelt að afrita og líma efni/texta fyrir t.d. heimaverkefni eða ritgerðir
- Styður tækni sem hjálpar nemendum með sjón- eða heyrnarskerðingu
- Gerð : 208
- Höfundur : 8238
- Útgáfuár : 2014
- Leyfi : 379