Measurement and Instrumentation

Námskeið
- T-316-LABB Mælikerfi
Lýsing:
Measurement and Instrumentation: Theory and Application, Third Edition, introduces undergraduate engineering students to measurement principles and the range of sensors and instruments used for measuring physical variables. Providing the most balanced coverage of measurement theory/technologies and instrumentation, this clearly and comprehensively written text arms students and recently graduated engineers with the knowledge and tools to design and build measurement systems for virtually any engineering application.
Provides early coverage of measurement system design to facilitate a better framework for understanding the importance of studying measurement and instrumentation Covers the latest developments in measurement technologies, including smart sensors, intelligent instruments, microsensors, digital recorders, displays and interfaces Includes significant material on data acquisition and signal processing with LabVIEW New sections in this updated edition include an expansion of sections on MEMS and electrical safety, new illustrations, including more photos of real devices, and more worked examples and end-of-chapter problems.
Annað
- Höfundar: Alan S. Morris, Reza Langari
- Útgáfa:3
- Útgáfudagur: 2020-09-02
- Engar takmarkanir á útprentun
- Engar takmarkanir afritun
- Format:Page Fidelity
- ISBN 13: 9780128171424
- Print ISBN: 9780128171417
- ISBN 10: 0128171421
Efnisyfirlit
- Measurement and Instrumentation
- Measurement and Instrumentation
- Copyright
- Contents
- Preface
- 1 - Fundamentals of measurement systems
- 1.1 Introduction
- 1.2 Measurement units
- 1.3 Measurement system design
- 1.3.1 Elements of a measurement system
- 1.3.2 Choosing appropriate measuring instruments
- 1.4 Measurement system applications
- 1.5 Summary
- 1.6 Problems
- 2 - Instrument types and performance characteristics
- 2.1 Introduction
- 2.2 Review of instrument types
- 2.2.1 Active and passive instruments
- 2.2.2 Null-type and deflection-type instruments
- 2.2.3 Analog and digital instruments
- 2.2.4 Indicating instruments and instruments with a signal output
- 2.2.5 Smart and nonsmart instruments
- 2.3 Static characteristics of instruments
- 2.4 Dynamic characteristics of instruments
- 2.4.1 Zero-order instrument
- 2.4.2 First-order instrument
- 2.4.3 Second-order instrument
- 2.5 Necessity for calibration
- 2.6 Summary
- 2.7 Problems
- 3 - Measurement uncertainty
- 3.1 Introduction
- 3.2 Sources of systematic error
- 3.2.1 System disturbance due to measurement
- Measurements in electric circuits
- 3.2.2 Errors due to environmental inputs
- 3.2.3 Wear in instrument components
- 3.2.4 Connecting leads
- 3.2.1 System disturbance due to measurement
- 3.3 Reduction of systematic errors
- 3.4 Quantification of systematic errors
- 3.4.1 Quantification of individual systematic error components
- Environmental condition errors
- Calibration errors
- System disturbance errors
- Measurement system loading errors
- 3.4.2 Calculation of overall systematic error
- 3.4.1 Quantification of individual systematic error components
- 3.5 Sources and treatment of random errors
- 3.6 Induced measurement noise
- 3.6.1 Inductive coupling
- 3.6.2 Capacitive (electrostatic) coupling
- 3.6.3 Noise due to multiple earths
- 3.6.4 Noise in the form of voltage transients
- 3.6.5 Thermoelectric potentials
- 3.6.6 Shot noise
- 3.6.7 Electrochemical potentials
- 3.7 Techniques for reducing induced measurement noise
- 3.7.1 Location and design of signal wires
- 3.7.2 Earthing
- 3.7.3 Shielding
- 3.7.4 Other techniques
- 3.8 Summary
- 3.9 Problems
- 4 - Statistical analysis of measurements subject to random errors
- 4.1 Introduction
- 4.2 Mean and median values
- 4.3 Standard deviation and variance
- 4.4 Graphical data analysis techniques: frequency distributions
- 4.5 Gaussian (Normal) distribution
- 4.6 Standard Gaussian tables (z distribution)
- 4.7 Standard error of the mean
- 4.8 Estimation of random error in a single measurement
- 4.9 Distribution of manufacturing tolerances
- 4.10 Chi-squared (χ2) distribution
- 4.11 Goodness of fit to a Gaussian distribution
- 4.11.1 Inspecting shape of histogram
- 4.11.2 Using a normal probability plot
- 4.11.3 Chi-squared test
- 4.12 Rogue data points (data outliers)
- 4.13 Student t distribution
- 4.14 Aggregation of measurement system errors
- 4.14.1 Combined effect of systematic and random errors
- 4.14.2 Aggregation of errors from separate measurement system components
- Error in a sum
- Error in a difference
- Error in a product
- Error in a quotient
- 4.14.3 Total error when combining multiple measurements
- 4.15 Summary
- 4.16 Problems
- 5 - Calibration of measuring sensors and instruments
- 5.1 Introduction
- 5.2 Principles of calibration
- 5.3 Control of calibration environment
- 5.4 Calibration chain and traceability
- 5.5 Calibration records
- 5.6 Summary
- 5.7 Problems
- References
- 6 - Conversion of nonvoltage sensor outputs
- 6.1 Introduction
- 6.2 Resistance measurement using a direct current bridge circuit
- 6.2.1 Null-type, direct current bridge (Wheatstone bridge)
- 6.2.2 Deflection-type direct current bridge
- Case where current drawn by measuring instrument is not negligible
- 6.2.3 Error analysis
- Apex balancing
- 6.3 Impedance measurement using alternating current bridges
- 6.3.1 Null-type impedance bridge
- 6.3.2 Maxwell and Hay's bridges
- 6.3.3 Deflection-type alternating current bridge
- 6.4 Alternative methods for measuring resistance
- 6.4.1 Voltmeter-ammeter method
- 6.4.2 Resistance-substitution method
- 6.4.3 Measurement using a digital voltmeter
- 6.4.4 Measurement using an ohmmeter
- 6.5 Alternative method for measuring inductance
- 6.6 Alternative methods to measure capacitance
- 6.7 Current measurement
- 6.8 Frequency measurement
- 6.8.1 Measurement using a digital counter-timer
- 6.8.2 Measurement using a phase-locked loop
- 6.8.3 Measurement using an oscilloscope
- 6.8.4 Measurement using a Wien bridge
- 6.9 Phase measurement
- 6.9.1 Measurement using an electronic counter-timer
- 6.9.2 Measurement using an X–Y plotter
- 6.9.3 Measurement using an oscilloscope
- 6.9.4 Measurement using a phase-sensitive detector
- 6.10 Summary
- 6.11 Problems
- 7.1 Introduction
- 7.2 Analog transmission using copper conductors
- 7.2.1 Transmission as varying voltages
- 7.2.2 Current loop transmission
- 7.2.3 Transmission using an A.C. carrier
- 7.3 Digital transmission using copper conductors
- 7.4 Fiber-optic transmission
- 7.4.1 Principles of fiber optics
- 7.4.2 Transmission characteristics
- 7.4.3 Multiplexing schemes
- 7.5 Optical wireless telemetry (open air path transmission)
- 7.6 Radio telemetry (radio wireless transmission)
- 7.7 Pneumatic transmission
- 7.8 Summary
- 7.9 Problems
- 8.1 Introduction
- 8.2 Preliminary definitions
- 8.3 Sensor signal characteristics
- 8.4 Aliasing
- 8.5 Quantization
- 8.6 Analog signal processing
- 8.7 Passive filters
- 8.7.1 Filter transfer function
- 8.7.2 Low-pass filter bode plot
- 8.7.3 Passive high-pass filter
- 8.8 Active filters
- 8.8.1 Active low-pass filter
- 8.8.2 Signal amplification
- 8.8.3 Noninverting amplifier
- 8.8.4 Differential amplification
- 8.8.5 Instrumentation amplifier
- 8.8.6 Other op-amp based filters and amplifiers
- 8.9 Digital filters
- 8.9.1 Filter with memory
- 8.9.2 Example
- 8.9.3 ARMA and IIR filters
- 8.10 Summary
- 8.11 Exercises
- Appendix
- Simple filter solution
- 9.1 Introduction
- 9.2 Computer-based data acquisition
- 9.3 Acquisition of data
- 9.4 National instruments LabVIEW
- Virtual instruments
- 9.5 Introduction to graphical programming in LabVIEW
- 9.6 Elements of the tools palette
- 9.7 Logic operations in LabVIEW
- 9.8 Loops in LabVIEW
- 9.9 Case structures in LabVIEW
- 9.10 Data acquisition using LabVIEW
- 9.11 LabVIEW function generation
- 9.12 LabVIEW implementation of digital filters
- 9.13 Higher-order digital filters in LabVIEW
- 9.14 Summary
- 9.15 Exercises
- 10.1 Introduction
- 10.2 Display of measurement signals
- 10.2.1 Digital meters
- 10.2.2 Analog meters
- Moving-coil meter
- Moving-iron meter
- Clamp-on meters
- Analog multimeter
- Measuring high-frequency signals with analog meters
- Calculation of meter outputs for nonstandard waveforms
- 10.2.3 Oscilloscopes
- Analog oscilloscope (Cathode ray oscilloscope)
- Digital storage oscilloscopes
- Digital phosphor oscilloscope
- Digital sampling oscilloscope
- PC-based oscilloscope
- 10.2.4 Electronic output displays
- 10.2.5 Computer monitor displays
- 10.3 Recording of measurement data
- 10.3.1 Chart recorders
- Pen strip chart recorder
- Multipoint strip chart recorder
- Circular chart recorder
- Paperless chart recorder
- Videographic recorder
- 10.3.2 Ink-jet and laser printers
- 10.3.3 Other recording instruments
- 10.3.4 Digital data recorders
- 10.3.1 Chart recorders
- 10.4 Presentation of data
- 10.4.1 Tabular data presentation
- 10.4.2 Graphical presentation of data
- Fitting curves to data points on a graph
- Regression techniques
- Linear least squares regression
- Quadratic least squares regression
- Polynomial least squares regression
- Confidence tests in curve fitting by least squares regression
- Correlation tests
- 11.1 Introduction
- 11.2 Principles of digital computation
- 11.2.1 Elements of a computer
- 11.2.2 Computer operation
- Programming and program execution
- 11.2.3 Computer input–output interface
- Address decoding
- Data transfer control
- 11.2.4 Practical considerations in adding computers to measurement systems
- 11.3 Intelligent devices
- 11.3.1 Intelligent instruments
- 11.3.2 Smart sensors
- Calibration capability
- Self-diagnosis of faults
- Automatic calculation of measurement accuracy and compensation for random errors
- Adjustment for measurement nonlinearities
- 11.3.3 Smart transmitters
- Comparison of performance with other forms of transmitter
- Summary of advantages of smart transmitters
- Self-calibration
- Self-diagnosis and fault detection
- 11.4.1 Input–output interface
- 11.4.2 Parallel data bus
- 11.4.3 Local area networks
- Star networks
- Ring and bus networks
- 11.4.4 Digital fieldbuses
- 12.1 Introduction
- 12.2 Reliability
- 12.2.1 Principles of reliability
- Reliability quantification in quasiabsolute terms
- Failure patterns
- Reliability quantification in probabilistic terms
- 12.2.2 Laws of reliability in complex systems
- Reliability of components in series
- Reliability of components in parallel
- 12.2.3 Improving measurement system reliability
- Choice of instrument
- Instrument protection
- Regular calibration
- Redundancy
- 12.2.4 Software reliability
- Quantifying software reliability
- Improving software reliability
- 12.2.1 Principles of reliability
- 12.3.1 Introduction to safety systems
- IEC61508
- 12.3.2 Design of a safety system
- Two-out-of-three voting system
- Standby system
- Actuators and alarms
- 13.1 Introduction
- 13.2 Capacitive sensors
- 13.3 Resistive sensors
- 13.4 Magnetic sensors
- 13.5 Hall-effect sensors
- 13.6 Piezoelectric transducers
- 13.7 Strain gauges
- 13.8 Piezoresistive sensors
- 13.9 Optical sensors
- 13.9.1 Optical sensors (Air-path)
- Light sources
- Light detectors
- 13.9.2 Optical sensors (Fiber-optic)
- Intrinsic sensors
- Extrinsic sensors
- Distributed sensors
- 13.9.1 Optical sensors (Air-path)
- 13.10.1 Transmission speed
- 13.10.2 Directionality of ultrasound waves
- 13.10.3 Relationship between wavelength, frequency and directionality of ultrasound waves
- 13.10.4 Attenuation of ultrasound waves
- 13.10.5 Ultrasound as a range sensor
- Measurement resolution and accuracy
- 13.10.6 Effect of noise in ultrasonic measurement systems
- 13.10.7 Exploiting Doppler shift in ultrasound transmission
- 14.1 Introduction
- 14.2 Thermoelectric effect sensors (thermocouples)
- 14.2.1 Thermocouple tables
- 14.2.2 Nonzero reference junction temperature
- 14.2.3 Thermocouple types
- Base metal thermocouples
- Noble metal thermocouples
- 14.2.4 Thermocouple protection
- 14.2.5 Thermocouple manufacture
- 14.2.6 The thermopile
- 14.2.7 Digital thermometer
- 14.2.8 The continuous thermocouple
- 14.3 Varying-resistance devices
- 14.3.1 Resistance temperature device (resistance thermometer)
- 14.3.2 Thermistors
- 14.4 Semiconductor devices
- 14.5 Radiation thermometers
- 14.5.1 Optical pyrometer
- 14.5.2 Radiation pyrometers
- 14.6 Thermography (thermal imaging)
- 14.7 Thermal expansion methods
- 14.7.1 Liquid-in-glass thermometers
- 14.7.2 Bimetallic thermometer
- 14.7.3 Pressure thermometers
- 14.8 Fiber-optic temperature sensors
- 14.9 Color indicators
- 14.10 Pyrometric cones
- 14.11 Intelligent temperature-measuring instruments
- 14.12 Microelectromechanical system temperature sensors
- 14.13 Choice between temperature transducers
- 14.14 Calibration of temperature transducers
- 14.14.1 Reference instruments and special calibration equipment
- 14.14.2 Calculating frequency of calibration checks
- 14.14.3 Procedures for calibration
- 14.15 Summary
- 14.16 Problems
- 15.1 Introduction
- 15.2 Diaphragms
- 15.3 Capacitive pressure sensor
- 15.4 Fiber-optic pressure sensors
- 15.5 Bellows
- 15.6 Bourdon tube
- 15.7 Manometers
- 15.8 Resonant-wire devices
- 15.9 Digital pressure gauges
- 15.9.1 Piezoresistive digital pressure gauge
- 15.9.2 Piezoelectric digital pressure gauge
- 15.9.3 Magnetic digital pressure gauge
- 15.9.4 Capacitive digital pressure gauge
- 15.9.5 Fiber-optic digital pressure sensor
- 15.9.6 Potentiometric digital pressure sensor
- 15.9.7 Resonant-wire digital pressure transducer
- 15.10 MEMS pressure sensors
- 15.11 Special measurement devices for low-pressures
- 15.12 High-pressure measurement (greater than 7000bar)
- 15.13 Intelligent pressure transducers
- 15.14 Differential pressure measuring devices
- 15.15 Selection of pressure sensors
- 15.16 Calibration of pressure sensors
- 15.16.1 Reference calibration instruments
- Dead-weight gauge (pressure balance)
- U-tube manometer
- Barometers
- Vibrating cylinder gauge
- Gold-chrome alloy resistance instruments
- McLeod gauge
- Ionization gauge
- Micromanometers
- 15.16.2 Calculating frequency of calibration checks
- 15.16.3 Procedures for calibration
- 15.16.1 Reference calibration instruments
- 15.17 Summary
- 15.18 Problems
- 16.1 Introduction
- 16.2 Mass flow rate
- 16.2.1 Conveyor-based methods
- 16.2.2 Coriolis flowmeter
- 16.2.3 Thermal mass flow measurement
- 16.2.4 Joint measurement of volume flow rate and fluid density
- 16.3 Volume flow rate
- 16.3.1 Differential pressure (obstruction-type) meters
- Orifice plate
- Venturis and similar devices
- Pitot static tube
- 16.3.2 Variable area flowmeters (Rotameters)
- 16.3.3 Positive displacement flowmeters
- 16.3.4 Turbine meters
- 16.3.5 Electromagnetic flowmeters
- 16.3.6 Vortex-shedding flowmeters
- 16.3.7 Ultrasonic flowmeters
- Doppler shift ultrasonic flowmeter
- Transit-time ultrasonic flowmeter
- Combined Doppler-shift/transit time flowmeters
- 16.3.8 Other types of flowmeter for measuring volume flow rate
- 16.3.9 Open channel flowmeters
- 16.3.1 Differential pressure (obstruction-type) meters
- 16.4 Intelligent flowmeters
- 16.5 Choice between flowmeters for particular applications
- 16.6 Calibration of flowmeters
- 16.6.1 Calibration equipment and procedures for mass flow measuring instruments
- 16.6.2 Calibration equipment and procedures for instruments measuring the volume flow rate of liquid
- Calibrated tank
- Gravimetric method
- Pipe prover
- Compact prover
- Positive displacement meter
- Orifice plate
- Turbine meter
- 16.6.3 Calibration equipment and procedures for instruments measuring the volume flow rate of gases
- Bell prover
- Positive displacement meter
- Compact prover
- 16.6.4 Reference standards
- 16.7 Summary
- 16.8 Problems
- 17.1 Introduction
- 17.2 Dipsticks
- 17.3 Float systems
- 17.4 Pressure-measuring devices (Hydrostatic systems)
- 17.5 Capacitive devices
- 17.6 Ultrasonic level gauge
- 17.7 Radar (microwave) sensors
- 17.8 Nucleonic (or radiometric) sensors
- 17.9 Vibrating level sensor
- 17.10 Intelligent level-measuring instruments
- 17.11 Choice between different level sensors
- 17.12 Calibration of level sensors
- 17.13 Summary
- 17.14 Problems
- 18.1 Introduction
- 18.2 Mass (weight) measurement
- 18.2.1 Electronic load cell (Electronic balance)
- 18.2.2 Pneumatic and Hydraulic load cells
- 18.2.3 Intelligent load cells
- 18.2.4 Mass balance (Weighing) instruments
- 18.2.5 Spring balance
- 18.3 Force measurement
- 18.3.1 Use of accelerometers
- 18.3.2 Vibrating wire sensor
- 18.3.3 Use of load cells
- 18.4 Torque measurement
- 18.4.1 Measurement of induced strain
- 18.4.2 Optical torque measurement
- 18.4.3 Torque measurement using surface acoustic wave MEMS devices
- 18.5 Calibration of mass, force and torque measuring sensors
- 18.5.1 Mass calibration
- Beam balance
- Weigh beam
- Electromagnetic balance
- Proof-ring-based load cell
- 18.5.2 Force sensor calibration
- 18.5.3 Calibration of torque-measuring systems
- 18.5.1 Mass calibration
- 18.6 Summary
- 18.7 Problems
- Reference
- 19.1 Introduction
- 19.2 Displacement
- 19.2.1 Resistive potentiometer
- 19.2.2 Linear variable differential transformer
- 19.2.3 Variable capacitance transducers
- 19.2.4 Variable inductance transducers
- 19.2.5 Strain gauges and piezoresistive sensors
- 19.2.6 Piezoelectric transducers
- 19.2.7 Nozzle flapper
- 19.2.8 Other methods of measuring small- to medium-sized displacements
- Linear inductosyn
- Translation of linear displacements into rotary motion
- Integration of output from velocity transducers and accelerometers
- Laser interferometer
- Fotonic sensor
- Noncontacting optical sensor
- 19.2.9 Measurement of large displacements (range sensors)
- Energy source/detector-based range sensors
- Rotary potentiometer and spring-loaded drum
- 19.2.10 Proximity sensors
- 19.2.11 Choosing translational measurement transducers
- 19.2.12 Calibration of translational displacement measurement transducers
- 19.3 Velocity
- 19.3.1 Differentiation of displacement measurements
- 19.3.2 Integration of the output of an accelerometer
- 19.3.3 Conversion to rotational velocity
- 19.3.4 Calibration of velocity measurement systems
- 19.4 Acceleration
- 19.4.1 Selection of accelerometers
- 19.4.2 Calibration of accelerometers
- 19.5 Vibration
- 19.5.1 Nature of vibration
- 19.5.2 Vibration measurement
- 19.5.3 Calibration of vibration sensors
- 19.6 Shock
- 19.6.1 Calibration of shock sensors
- 19.7 Summary
- 19.8 Problems
- 20.1 Introduction
- 20.2 Rotational displacement
- 20.2.1 Circular and helical potentiometers
- 20.2.2 Rotational variable differential transformer
- 20.2.3 Incremental shaft encoders
- 20.2.4 Coded-disk shaft encoders
- Optical digital shaft encoder
- Contacting (electrical) digital shaft encoder
- Magnetic digital shaft encoder
- 20.2.5 The resolver
- Varying amplitude output resolver
- Varying phase output resolver
- 20.2.6 The synchro
- 20.2.7 The rotary inductosyn
- 20.2.8 Gyroscopes
- Mechanical gyroscopes
- Optical gyroscopes
- 20.2.9 Choice between rotational displacement transducers
- 20.2.10 Calibration of rotational displacement transducers
- 20.3 Rotational velocity
- 20.3.1 Digital tachometers
- Optical sensing
- Inductive sensing
- Magnetic (Hall-effect) sensing
- 20.3.2 Stroboscopic methods
- 20.3.3 Analog tachometers
- 20.3.4 The rate gyroscope
- 20.3.5 Fiber-optic gyroscope
- 20.3.6 MEMS gyroscope
- 20.3.7 Differentiation of angular displacement measurements
- 20.3.8 Integration of the output from an accelerometer
- 20.3.9 Choice between rotational velocity transducers
- 20.3.10 Calibration of rotational velocity transducers
- 20.3.1 Digital tachometers
- 20.4 Rotational acceleration
- 20.4.1 Calibration of rotational accelerometers
- 20.5 Summary
- 20.6 Problems
- 21.1 Introduction
- 21.2 Dimension measurement
- 21.2.1 Rules and tapes
- 21.2.2 Calipers
- 21.2.3 Micrometers
- 21.2.4 Gauge blocks (slip gauges) and length bars
- 21.2.5 Height and depth measurement
- 21.2.6 Calibration of dimension measurements
- 21.3 Angle measurement
- 21.3.1 Calibration
- 21.4 Surface flatness measurement
- 21.4.1 Calibration of variation gauge
- 21.5 Volume measurement
- 21.5.1 Calibration of volume measurements
- 21.6 Viscosity measurement
- 21.6.1 Viscosity calibration
- 21.7 Moisture measurement
- 21.7.1 Industrial moisture measurement techniques
- Electrical methods
- Neutron moderation
- Low-resolution nuclear magnetic resonance
- Optical methods
- Ultrasonic methods
- Change in mechanical properties
- 21.7.2 Laboratory techniques for moisture measurement
- Water separation
- Gravimetric methods
- Phase-change methods
- Equilibrium relative humidity measurement
- 21.7.3 Humidity measurement
- The electrical hygrometer
- The psychrometer (wet and dry bulb hygrometer)
- Dew point meter
- Microelectromechanical system (MEMS)relative humidity sensor
- 21.7.4 Calibration of moisture and humidity measurements
- 21.7.1 Industrial moisture measurement techniques
- 21.8 Sound measurement
- 21.8.1 Calibration of sound meters
- 21.9 pH measurement
- 21.9.1 pH calibration
- 21.10 Gas sensing and analysis
- 21.10.1 Calibration of gas sensors
- 21.11 Summary
- 21.12 Problems
- Length
- Area
- Second moment of area
- Volume
- Density
- Mass
- Force
- Torque (moment of force)
- Inertia
- Pressure
- Additional conversion factors
- Energy, work, heat
- Additional conversion factors
- Power
- Velocity
- Acceleration
- Mass flow rate
- Volume flow rate
- Specific energy (heat per unit volume)
- Dynamic viscosity
- Kinematic viscosity
- References
- Interpolation
- A
- B
- C
- D
- E
- F
- G
- H
- I
- J
- K
- L
- M
- N
- O
- P
- Q
- R
- S
- T
- U
- V
- W
- X
- Z
UM RAFBÆKUR Á HEIMKAUP.IS
Bókahillan þín er þitt svæði og þar eru bækurnar þínar geymdar. Þú kemst í bókahilluna þína hvar og hvenær sem er í tölvu eða snjalltæki. Einfalt og þægilegt!Rafbók til eignar
Rafbók til eignar þarf að hlaða niður á þau tæki sem þú vilt nota innan eins árs frá því bókin er keypt.
Þú kemst í bækurnar hvar sem er
Þú getur nálgast allar raf(skóla)bækurnar þínar á einu augabragði, hvar og hvenær sem er í bókahillunni þinni. Engin taska, enginn kyndill og ekkert vesen (hvað þá yfirvigt).
Auðvelt að fletta og leita
Þú getur flakkað milli síðna og kafla eins og þér hentar best og farið beint í ákveðna kafla úr efnisyfirlitinu. Í leitinni finnur þú orð, kafla eða síður í einum smelli.
Glósur og yfirstrikanir
Þú getur auðkennt textabrot með mismunandi litum og skrifað glósur að vild í rafbókina. Þú getur jafnvel séð glósur og yfirstrikanir hjá bekkjarsystkinum og kennara ef þeir leyfa það. Allt á einum stað.
Hvað viltu sjá? / Þú ræður hvernig síðan lítur út
Þú lagar síðuna að þínum þörfum. Stækkaðu eða minnkaðu myndir og texta með multi-level zoom til að sjá síðuna eins og þér hentar best í þínu námi.
Fleiri góðir kostir
- Þú getur prentað síður úr bókinni (innan þeirra marka sem útgefandinn setur)
- Möguleiki á tengingu við annað stafrænt og gagnvirkt efni, svo sem myndbönd eða spurningar úr efninu
- Auðvelt að afrita og líma efni/texta fyrir t.d. heimaverkefni eða ritgerðir
- Styður tækni sem hjálpar nemendum með sjón- eða heyrnarskerðingu
- Gerð : 208
- Höfundur : 15193
- Útgáfuár : 2015
- Leyfi : 380