1. Bækur og afþreying
  2. Bækur og kort
  3. Rafbækur
  4. Verkfræði- og náttúruvísindi
  5. Efnafræði

General Chemistry

Vörumerki: Pearson
Vörunúmer: 9780134419022
Rafræn bók. Uppl. sendar á netfangið þitt eftir kaup

Veldu vöru

5.990 kr.

General Chemistry

Veldu vöru

Rafræn bók. Uppl. sendar á netfangið þitt eftir kaup
Rafbók til leigu í 1 ár. Útgáfa: 11

Efnisyfirlit

  • General Chemistry Principles and Modern Applications
  • Brief Table of Contents
  • Contents
  • Focus On Discussions on MasteringChemistryTM (www.masteringchemistry.com)
  • About the Authors
  • Preface
    • Organization
    • Changes to this Edition
    • Overall Approach
    • Features of this Edition
    • Digital and Print Resources
  • 1 Matter: Its Properties and Measurement
    • Contents
    • Learning Objectives
    • 1-1 The Scientific Method
    • 1-2 Properties of Matter
      • Physical Properties and Physical Changes
      • Chemical Properties and Chemical Changes
    • 1-3 Classification of Matter
      • Separating Mixtures
      • Decomposing Compounds
      • States of Matter
    • 1-4 Measurement of Matter: SI (Metric) Units
      • Mass
      • Time
      • Temperature
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Derived Units
      • Non-SI Units
    • 1-5 Density and Percent Composition: Their Use in Problem Solving
      • Density
      • Density in Conversion Pathways
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Percent Composition as a Conversion Factor
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 1-6 Uncertainties in Scientific Measurements
    • 1-7 Significant Figures
      • Significant Figures in Numerical Calculations
      • Rounding Off Numerical Results
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • Summary
    • Integrative Example
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • Exercises
      • The Scientific Method
      • Properties and Classification of Matter
      • Exponential Arithmetic
      • Significant Figures
      • Units of Measurement
      • Temperature Scales
      • Density
      • Percent Composition
    • Integrative and Advanced Exercises
    • Feature Problems
    • Self-Assessment Exercises
  • 2 Atoms and the Atomic Theory
    • Contents
    • Learning Objectives
    • 2-1 Early Chemical Discoveries and the Atomic Theory
      • Law of Conservation of Mass
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Law of Constant Composition
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Dalton's Atomic Theory
    • 2-2 Electrons and Other Discoveries in Atomic Physics
      • The Discovery of Electrons
      • X-Rays and Radioactivity
    • 2-3 The Nuclear Atom
      • Discovery of Protons and Neutrons
      • Properties of Protons, Neutrons, and Electrons
    • 2-4 Chemical Elements
      • Isotopes
      • Ions
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Isotopic Masses
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 2-5 Atomic Mass
      • Atomic Mass Intervals and Conventional Atomic Masses
      • Some Representative Examples
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 2-6 Introduction to the Periodic Table
      • Useful Relationships from the Periodic Table
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 2-7 The Concept of the Mole and the Avogadro Constant
      • Thinking About Avogadro's Number
    • 2-8 Using the Mole Concept in Calculations
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • Summary
    • Integrative Example
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • Exercises
      • Law of Conservation of Mass
      • Law of Constant Composition
      • Law of Multiple Proportions
      • Fundamental Charges and Mass-to-Charge Ratios
      • Atomic Number, Mass Number, and Isotopes
      • Atomic Mass Units, Atomic Masses
      • Mass Spectrometry
      • The Periodic Table
      • The Avogadro Constant and the Mole
      • Integrative and Advanced Exercises
    • Feature Problems
    • Self-Assessment Exercises
  • 3 Chemical Compounds
    • Contents
    • Learning Objectives
    • 3-1 Types of Chemical Compounds and Their Formulas
      • Molecular Compounds
      • Ionic Compounds
    • 3-2 The Mole Concept and Chemical Compounds
      • Mole of a Compound
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Mole of an Element—A Second Look
    • 3-3 Composition of Chemical Compounds
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
      • Calculating Percent Composition from a Chemical Formula
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Establishing Formulas from the Experimentally Determined Percent Composition of Compounds
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Combustion Analysis
        • Analyze
        • Solve
          • Percent Composition
          • Empirical Formula
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 3-4 Oxidation States: A Useful Tool in Describing Chemical Compounds
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • 3-5 Naming Compounds: Organic and Inorganic Compounds
    • 3-6 Names and Formulas of Inorganic Compounds
      • Binary Compounds of Metals and Nonmetals
      • Binary Compounds of Two Nonmetals
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Binary Acids
      • Polyatomic Ions
      • Oxoacids
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Some Compounds of Greater Complexity
    • 3-7 Names and Formulas of Organic Compounds
      • Hydrocarbons
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Functional Groups
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • Summary
    • Integrative Example
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • Exercises
      • Representing Molecules
      • The Avogadro Constant and the Mole
      • Chemical Formulas
      • Percent Composition of Compounds
      • Chemical Formulas from Percent Composition
      • Combustion Analysis
      • Oxidation States
      • Nomenclature
      • Hydrates
      • Organic Compounds and Organic Nomenclature
    • Integrative and Advanced Exercises
    • Feature Problems
    • Self-Assessment Exercises
  • 4 Chemical Reactions
    • Contents
    • Learning Objectives
    • 4-1 Chemical Reactions and Chemical Equations
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
      • States of Matter
      • Reaction Conditions
    • 4-2 Chemical Equations and Stoichiometry
    • 4-3 Chemical Reactions in Solution
      • Molarity
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
        • Solution Dilution
          • Analyze
          • Solve
          • Assess
            • Practice Example A:
            • Practice Example B:
        • Stoichiometry of Reactions in Solution
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • 4-4 Determining the Limiting Reactant
      • 4-5 Other Practical Matters in Reaction Stoichiometry
        • Theoretical Yield, Actual Yield, and Percent Yield
          • Analyze
          • Solve
          • Assess
            • Practice Example A:
            • Practice Example B:
          • Analyze
          • Solve
          • Assess
            • Practice Example A:
            • Practice Example B:
        • Consecutive, Simultaneous, and Overall Reactions
          • Analyze
          • Solve
          • Assess
            • Practice Example A:
            • Practice Example B:
          • Analyze
          • Solve
          • Assess
            • Practice Example A:
            • Practice Example B:
      • 4-6 The Extent of Reaction
        • Analyze
        • Solve
        • Analyze
          • Practice Example A:
          • Practice Example B:
    • Summary
    • Integrative Example
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • Exercises
      • Writing and Balancing Chemical Equations
      • Stoichiometry of Chemical Reactions
      • Molarity
      • Chemical Reactions in Solution
      • Determining the Limiting Reactant
      • Theoretical, Actual, and Percent Yields
      • Consecutive Reactions, Simultaneous Reactions
    • Integrative and Advanced Exercises
    • Feature Problems
    • Self-Assessment Exercises
  • 5 Introduction to Reactions in Aqueous Solutions
    • Contents
    • Learning Objectives
    • 5-1 The Nature of Aqueous Solutions
      • Dissociation and Ionization
      • A Notation for Representing Concentrations of Entities in Solution
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 5-2 Precipitation Reactions
      • Net Ionic Equations
      • Predicting Precipitation Reactions
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 5-3 Acid–Base Reactions
      • Acids
      • Bases
      • Acidic and Basic Solutions
      • Neutralization
      • Recognizing Acids and Bases
      • More Acid—Base Reactions
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 5-4 Oxidation–Reduction Reactions: Some General Principles
      • Oxidation State Changes
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Oxidation and Reduction Half-Reactions
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 5-5 Balancing Oxidation–Reduction Equations
      • The Half-Equation Method
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Balancing Redox Equations in a Basic Solution
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Disproportionation Reactions
    • 5-6 Oxidizing and Reducing Agents
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • 5-7 Stoichiometry of Reactions in Aqueous Solutions: Titrations
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • Summary
    • Integrative Example
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • Exercises
      • Strong Electrolytes, Weak Electrolytes, and Nonelectrolytes
      • Ion Concentrations
      • Predicting Precipitation Reactions
      • Acid—Base Reactions
      • Oxidation—Reduction (Redox) Equations
      • Oxidizing and Reducing Agents
      • Neutralization and Acid—Base Titrations
      • Stoichiometry of Oxidation—Reduction Reactions
    • Integrative and Advanced Exercises
    • Feature Problems
    • Self-Assessment Exercises
  • 6 Gases
    • Contents
    • Learning Objectives
    • 6-1 Properties of Gases: Gas Pressure
      • The Concept of Pressure
      • Liquid Pressure
      • Barometric Pressure
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Manometers
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Units of Pressure: A Summary
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 6-2 The Simple Gas Laws
      • Boyle's Law
      • Charles's Law
      • Standard Conditions of Temperature and Pressure
      • Avogadro's Law
    • 6-3 Combining the Gas Laws: The Ideal Gas Equation and the General Gas Equation
      • The Ideal Gas Equation
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • The General Gas Equation
      • Using the Gas Laws
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 6-4 Applications of the Ideal Gas Equation
      • Molar Mass Determination
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Gas Densities
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 6-5 Gases in Chemical Reactions
      • Law of Combining Volumes
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
            • Practice Example B:
      • 6-6 Mixtures of Gases
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
          • Practice Example B:
      • 6-7 Kinetic–Molecular Theory of Gases
      • Distribution of Molecular Speeds
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • The Meaning of Temperature
      • Derivation of Boyle's Law
    • 6-8 Gas Properties Relating to the Kinetic–Molecular Theory
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
      • Derivation of Graham's Law
      • Applications of Diffusion
    • 6-9 Nonideal (Real) Gases
      • The van der Waals Equation
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • Summary
    • Integrative Example
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • Exercises
      • Pressure and Its Measurement
      • The Simple Gas Laws
      • General Gas Equation
      • Ideal Gas Equation
      • Determining Molar Mass
      • Gas Densities
      • Gases in Chemical Reactions
      • Mixtures of Gases
      • Collecting Gases over Liquids
      • Kinetic–Molecular Theory
      • Diffusion and Effusion of Gases
      • Nonideal Gases
    • Integrative and Advanced Exercises
    • Feature Problems
    • Self-Assessment Exercises
  • 7 Thermochemistry
    • Contents
    • Learning Objectives
    • 7-1 Getting Started: Some Terminology
    • 7-2 Heat
      • Heat Capacity
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Experimental Determination of Specific Heat Capacities
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Specific Heat Capacities of Some Substances
    • 7-3 Heats of Reaction and Calorimetry
      • Bomb Calorimetry
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • The Coffee-Cup Calorimeter
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 7-4 Work
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • 7-5 The First Law of Thermodynamics
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
      • Functions of State
      • Path-Dependent Functions
    • 7-6 Application of the First Law to Chemical and Physical Changes
      • Enthalpy of Reaction: ?rH
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • The Physical Significance of Enthalpy Change
      • Enthalpy Change Accompanying a Change in State of Matter
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Standard States and Standard Enthalpies of Reaction
      • Enthalpy Diagrams
    • 7-7 Indirect Determination of ?rH: Hess's Law
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • 7-8 Standard Enthalpies of Formation
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
      • Standard Enthalpies of Reaction
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Reactions Involving Ions in Solution
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 7-9 Fuels as Sources of Energy
      • Fossil Fuels
        • Problems Posed by Fossil Fuel Use
        • Global Warming—An Environmental Issue Involving Carbon Dioxide
      • Coal and Other Energy Sources
        • Gasification of Coal
        • Liquefaction of Coal
      • Methanol
      • Ethanol
      • Biofuels
      • Hydrogen
      • Alternative Energy Sources
    • 7-10 Spontaneous and Nonspontaneous Processes: An Introduction
    • Summary
    • Integrative Example
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • Exercises
      • Heat Capacity (Specific Heat Capacity)
      • Heats of Reaction
      • Enthalpy Changes and States of Matter
      • Calorimetry
      • Pressure–Volume Work
      • First Law of Thermodynamics
      • Relating ?H and ?U
      • Hess's Law
      • Standard Enthalpies of Formation
    • Integrative and Advanced Exercises
    • Feature Problems
    • Self-Assessment Exercises
  • 8 Electrons in Atoms
    • Contents
    • Learning Objectives
    • 8-1 Electromagnetic Radiation
      • Frequency, Wavelength, and Speed of Electromagnetic Radiation
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • An Important Characteristic of Electromagnetic Waves
      • The Visible Spectrum
    • 8-2 Prelude to Quantum Theory
      • Blackbody Radiation
      • The Photoelectric Effect
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Atomic Emission Spectra
      • An Early Attempt to Understand Atomic Emission Spectra: The Bohr Model
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 8-3 Energy Levels, Spectrum, and Ionization Energy of the Hydrogen Atom
      • Spectroscopy and Atomic Line Spectra
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Ionization Energy of Hydrogen and Hydrogen-Like Ions
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 8-4 Two Ideas Leading to Quantum Mechanics
      • Wave–Particle Duality
      • The Uncertainty Principle
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 8-5 Wave Mechanics
      • Standing Waves
      • Particle in a Box: Standing Waves, Quantum Particles, and Wave Functions
      • The Born Interpretation of the Wave Function
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 8-6 Quantum Theory of the Hydrogen Atom
      • The Schrödinger Equation
      • Assigning Quantum Numbers
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Principal Shells and Subshells
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • The Energies of Principal Shells and Subshells in One-Electron Species
    • 8-7 Interpreting and Representing the Orbitals of the Hydrogen Atom
      • The Radial Functions
      • The Angular Functions
        • s orbitals
        • p orbitals
        • d orbitals
      • The Wave Functions and the Shapes of the Orbitals
    • 8-8 Electron Spin: A Fourth Quantum Number
      • Electronic Structure of the H Atom: Representing the Four Quantum Numbers
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 8-9 Multielectron Atoms
      • A Conceptual Model for Multielectron Atoms
      • Penetration and Shielding
    • 8-10 Electron Configurations
      • Rules for Assigning Electrons to Orbitals
      • Representing Electron Configurations
      • The Aufbau Process
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 8-11 Electron Configurations and the Periodic Table
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • Summary
    • Integrative Example
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • Exercises
      • Electromagnetic Radiation
      • Photons and the Photoelectric Effect
      • Atomic Spectra
      • Energy Levels and Spectrum of the Hydrogen Atom
      • Wave–Particle Duality
      • The Heisenberg Uncertainty Principle
      • Wave Mechanics
      • Quantum Numbers and Electron Orbitals
      • The Shapes of Orbitals and Radial Probabilities
      • Electron Configurations
    • Integrative and Advanced Exercises
    • Feature Problems
    • Self-Assessment Exercises
  • 9 The Periodic Table and Some Atomic Properties
    • Contents
    • Learning Objectives
    • 9-1 Classifying the Elements: The Periodic Law and the Periodic Table
      • Mendeleev's Periodic Table
      • Discovery of New Elements
      • Atomic Number as the Basis for the Periodic Law
      • Description of a Modern Periodic Table: The Long Form
    • 9-2 Metals and Nonmetals and Their Ions
      • Noble Gases
      • Main-Group Metal Ions
      • Main-Group Nonmetal Ions
      • Transition Metal Ions
      • Hydrogen
    • 9-3 Sizes of Atoms and Ions
      • Atomic Radius
      • Screening and Penetration
      • The Effects of Penetration and Screening
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Ionic Radius
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 9-4 Ionization Energy
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • 9-5 Electron Affinity
    • 9-6 Magnetic Properties
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • 9-7 Polarizability
    • Summary
    • Integrative Example
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • Exercises
      • The Periodic Law
      • The Periodic Table
      • Atomic Radii and Ionic Radii
      • Ionization Energies; Electron Affinities
      • Magnetic Properties
      • Predictions Based on the Periodic Table
    • Integrative and Advanced Exercises
    • Feature Problems
    • Self-Assessment Exercises
  • 10 Chemical Bonding I: Basic Concepts
    • Contents
    • Learning Objectives
    • 10-1 Lewis Theory: An Overview
      • Lewis Symbols and Lewis Structures
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Lewis Structures for Ionic Compounds
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 10-2 Covalent Bonding: An Introduction
      • Coordinate Covalent Bonds
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Multiple Covalent Bonds
    • 10-3 Polar Covalent Bonds and Electrostatic Potential Maps
      • Electronegativity
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 10-4 Writing Lewis Structures
      • Skeletal Structures
      • A Strategy for Writing Lewis Structures
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Formal Charge
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 10-5 Resonance
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • 10-6 Exceptions to the Octet Rule
      • Odd-Electron Species
      • Incomplete Octets
      • Expanded Valence Shells
    • 10-7 Shapes of Molecules
      • Valence-Shell Electron-Pair Repulsion (VSEPR) Theory
      • Possibilities for Electron-Group Distributions
        • Electron-group geometries
          • Analyze
          • Solve
          • Assess
            • Practice Example A:
            • Practice Example B:
      • Applying VSEPR Theory
      • Structures with Multiple Covalent Bonds
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Molecules with More Than One Central Atom
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Molecular Shapes and Dipole Moments
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 10-8 Bond Order and Bond Lengths
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • 10-9 Bond Energies
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • Summary
    • Integrative Example
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • Exercises
      • Lewis Theory
      • Ionic Bonding
      • Formal Charge
      • Lewis Structures
      • Polar Covalent Bonds and Electrostatic Potential Maps
      • Resonance
      • Odd-Electron Species
      • Expanded Valence Shells
      • Molecular Shapes
      • Shapes of Molecules with More Than One Central Atom
      • Polar Molecules
      • Bond Lengths
      • Bond Energies
    • Integrative and Advanced Exercises
    • Feature Problems
    • Self-Assessment Exercises
  • 11 Chemical Bonding II: Valence Bond and Molecular Orbital Theories
    • Contents
    • Learning Objectives
    • 11-1 What a Bonding Theory Should Do
      • The Covalent Bond: A Quantum Mechanical Concept
    • 11-2 Introduction to the Valence Bond Method
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • 11-3 Hybridization of Atomic Orbitals
      • Bonding H2O in and NH3
      • sp2 Hybrid Orbitals
      • sp Hybrid Orbitals
      • sp3d and sp3d2 Hybrid Orbitals
      • Hybrid Orbitals and the Valence-Shell Electron-Pair Repulsion (VSEPR) Theory
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 11-4 Multiple Covalent Bonds
      • Bonding in C2H4
      • Bonding in C2H2
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 11-5 Molecular Orbital Theory
      • Diatomic Molecules of the First-Period Elements
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
        • Molecular Orbitals of the Second-Period Elements
        • A Special Look at O2
          • Analyze
          • Solve
          • Assess
            • Practice Example A:
            • Practice Example B:
        • A Look at Heteronuclear Diatomic Molecules
          • Analyze
          • Solve
          • Assess
            • Practice Example A:
            • Practice Example B:
      • 11-6 Delocalized Electrons: An Explanation Based on Molecular Orbital Theory
      • Bonding in Benzene
        • Other Structures with Delocalized Molecular Orbitals
          • Analyze
          • Solve
          • Assess
            • Practice Example A:
            • Practice Example B:
      • 11-7 Some Unresolved Issues: Can Electron Density Plots Help?
        • Bonding in the Molecule SF6
        • Bonding in the Molecule SCl2
        • Bonding in the Molecule H2SO4 and the Anion SO42-
        • How Should We Proceed? What Is the Correct Formulation?
    • Summary
    • Integrative Example
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • Exercises
      • Valence Bond Method
      • Molecular Orbital Theory
      • Delocalized Molecular Orbitals
    • Integrative and Advanced Exercises
    • Feature Problems
    • Self-Assessment Exercises
  • 12 Intermolecular Forces: Liquids and Solids
    • Contents
    • Learning Objectives
    • 12-1 Intermolecular Forces
      • Dipole Moment and Polarizability
      • Dipole–Dipole Interactions
      • Dispersion Forces
        • Hydrogen Bonding
          • Analyze
          • Solve
          • Assess
            • Practice Example A:
            • Practice Example B:
      • Hydrogen Bonding in Water
      • Other Properties Affected by Hydrogen Bonding
      • Intermolecular and Intramolecular Hydrogen Bonding
      • Hydrogen Bonding In Living Matter
      • Summary of van der Waals Forces
    • 12-2 Some Properties of Liquids
      • Surface Tension
      • Viscosity
      • Enthalpy of Vaporization
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Vapor Pressure
      • Measuring Vapor Pressure
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Using Vapor Pressure Data
        • Analyze
        • Solve
          • Liquid Only
          • Vapor Only
          • Liquid and Vapor
        • Assess
          • Practice Example A:
          • Practice Example B:
      • An Equation for Expressing Vapor Pressure Data
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Boiling and the Boiling Point
      • The Critical Point
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 12-3 Some Properties of Solids
      • Melting, Melting Point, and Heat of Fusion
      • Sublimation
    • 12-4 Phase Diagrams
      • Iodine
      • Carbon Dioxide
      • Supercritical Fluids
      • Water
      • Phases and Phase Transitions
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 12-5 The Nature of Bonding in Solids
      • Network Covalent Solids
        • Diamond
        • Graphite
      • Other Allotropes of Carbon
      • Ionic Solids
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Molecular Solids
      • Metallic Solids
    • 12-6 Crystal Structures
      • Crystal Lattices
      • Closest Packed Structures
      • Coordination Number and Number of Atoms per Unit Cell
      • X-Ray Diffraction
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Ionic Crystal Structures
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 12-7 Energy Changes in the Formation of Ionic Crystals
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • Summary
    • Integrative Example
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • Exercises
      • Intermolecular Forces
      • Surface Tension and Viscosity
      • Vaporization
      • Vapor Pressure and Boiling Point
      • The Clausius–Clapeyron Equation
      • Critical Point
      • Melting and Freezing
      • States of Matter and Phase Diagrams
      • Network Covalent Solids
      • Ionic Bonding and Properties
      • Crystal Structures
      • Ionic Crystal Structures
      • Lattice Energy
    • Integrative and Advanced Exercises
    • Feature Problems
    • Self-Assessment Exercises
  • 13 Spontaneous Change: Entropy and Gibbs Energy
    • Contents
    • Learning Objectives
    • 13-1 Entropy: Boltzmann's View
      • Microstates
      • The Boltzmann Equation for Entropy
      • Microscopic Interpretation of Entropy Change
        • Analyze
        • Solve
        • Assess
          • Practice Problem A:
          • Practice Problem B:
      • Describing Entropy Changes for Some Simple Processes
        • Analyze
        • Analyze
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 13-2 Entropy Change: Clausius's View
      • Phase Transitions
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Heating or Cooling at Constant Pressure
      • Changes in State for an Ideal Gas
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 13-3 Combining Boltzmann's and Clausius's Ideas: Absolute Entropies
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • 13-4 Criterion for Spontaneous Change: The Second Law of Thermodynamics
      • Gibbs Energy and Gibbs Energy Change
      • Applying the Gibbs Energy Criteria for Spontaneous Change
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Gibbs Energy Change and Work
    • 13-5 Gibbs Energy Change of a System of Variable Composition: ?rG° and ?rG
      • Standard Gibbs Energy of Reaction, ?rG°
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Gibbs Energy of Reaction for Nonstandard Conditions, ?rG
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • The Thermodynamic Reaction Quotient, Q
      • Relationship of ?rG° to the Equilibrium Constant K
      • Different Forms of the Equilibrium Constant
        • Reactions Involving Gases.
        • Reactions in Aqueous Solution.
        • Reactions in a Heterogeneous System.
          • Analyze
          • Solve
          • Assess
            • Practice Example A:
            • Practice Example B:
          • Analyze
          • Solve
          • Assess
            • Practice Example A:
            • Practice Example B:
      • Interpreting the Values of ?rG° and K
    • 13-6 ?rG° and K as Functions of Temperature
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • 13-7 Coupled Reactions
    • 13-8 Chemical Potential and Thermodynamics of Spontaneous Chemical Change
      • Gibbs Energy of an Ideal Gas
      • Gibbs Energy of an Ideal Gas Mixture
      • Chemical Potential and Activity
      • Expressing ?rG° in Terms of Chemical Potentials
      • Criterion for Predicting the Direction of Spontaneous Chemical Change
    • Summary
    • Integrative Example
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • Exercises
      • Entropy and Spontaneous Change
      • Gibbs Energy and Spontaneous Change
      • Standard Gibbs Energy of Reaction, ?rG°
      • The Thermodynamic Equilibrium Constant
      • Relationships Involving ?rG, ?rG°, Q, and K
      • ?rG° and K as Functions of Temperature
      • Coupled Reactions
    • Integrative and Advanced Exercises
    • Feature Problems
    • Self-Assessment Exercises
  • 14 Solutions and Their Physical Properties
    • Contents
    • Learning Objectives
    • 14-1 Types of Solutions: Some Terminology
    • 14-2 Solution Concentration
      • Mass Percent, Volume Percent, and Mass/Volume Percent
      • Parts per Million, Parts per Billion, and Parts per Trillion
      • Mole Fraction and Mole Percent
      • Molarity
      • Molality
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 14-3 Intermolecular Forces and the Solution Process
      • Enthalpy of Solution
      • Intermolecular Forces in Mixtures
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Formation of Ionic Solutions
      • Standard Thermodynamic Properties of Aqueous Ions
    • 14-4 Solution Formation and Equilibrium
      • Solubility as a Function of Temperature
      • Fractional Crystallization
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 14-5 Solubilities of Gases
      • Effect of Temperature
      • Effect of Pressure
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 14-6 Vapor Pressures of Solutions
      • Liquid–Vapor Equilibrium: Ideal Solutions
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Fractional Distillation
      • Liquid–Vapor Equilibrium: Nonideal Solutions
    • 14-7 Osmotic Pressure
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
      • Practical Applications
    • 14-8 Freezing-Point Depression and Boiling-Point Elevation of Nonelectrolyte Solutions
      • Practical Applications
    • 14-9 Solutions of Electrolytes
      • Anomalous Colligative Properties
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Interionic Attractions
    • 14-10 Colloidal Mixtures
    • Summary
    • Integrative Example
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • Exercises
      • Homogeneous and Heterogeneous Mixtures
      • Percent Concentration
      • Molarity
      • Molality
      • Mole Fraction, Mole Percent
      • Solubility Equilibrium
      • Solubility of Gases
      • Raoult's Law and Liquid–Vapor Equilibrium
      • Osmotic Pressure
      • Freezing-Point Depression and Boiling-Point Elevation
      • Strong Electrolytes, Weak Electrolytes, and Nonelectrolytes
    • Integrative and Advanced Exercises
    • Feature Problems
    • Self-Assessment Exercises
  • 15 Principles of Chemical Equilibrium
    • Contents
    • Learning Objectives
    • 15-1 The Nature of the Equilibrium State
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
      • The Dynamic Nature of the Equilibrium Condition
    • 15-2 The Equilibrium Constant Expression
      • Equilibria Involving Gases
      • Equilibria in Aqueous Solution
      • Equilibria Involving Pure Liquids and Solids
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 15-3 Relationships Involving Equilibrium Constants
      • Relationship of K to the Balanced Chemical Equation
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Combining Equilibrium Constant Expressions
      • Relationship Between Kp and Kc for Reactions Involving Gases
      • Relationships Among K, Kp, and Kc: A Summary
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 15-4 The Magnitude of an Equilibrium Constant
    • 15-5 Predicting the Direction of Net Chemical Change
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • 15-6 Altering Equilibrium Conditions: Le Châtelier's Principle
      • Effect of Changing the Amounts of Reacting Species on Equilibrium
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Effect of Changes in Pressure or Volume on Equilibrium
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Effect of Temperature on Equilibrium
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Effect of a Catalyst on Equilibrium
    • 15-7 Equilibrium Calculations: Some Illustrative Examples
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
      • Solving Equilibrium Problems When K Is Very Small or Very Large
        • Analyze
        • Solve
        • Assess
        • Analyze
        • Solve
        • Assess
    • Summary
    • Integrative Example
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • Exercises
      • Writing Equilibrium Constant Expressions
      • Experimental Determination of Equilibrium Constants
      • Equilibrium Relationships
      • Direction and Extent of Chemical Change
      • Partial Pressure Equilibrium Constant, Kp
      • Le Châtelier's Principle
      • Reactions with Very Small or Very Large K Values
    • Integrative and Advanced Exercises
    • Feature Problems
    • Self-Assessment Exercises
  • 16 Acids and Bases
    • Contents
    • Learning Objectives
    • 16-1 Acids, Bases, and Conjugate Acid–Base Pairs
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
    • 16-2 Self-Ionization of Water and the pH Scale
      • pH and pOH
      • Acidic, Basic, and Neutral Solutions
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
    • 16-3 Ionization of Acids and Bases in Water
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
    • 16-4 Strong Acids and Strong Bases
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
    • 16-5 Weak Acids and Weak Bases
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
      • More on Simplifying Assumptions
    • 16-6 Polyprotic Acids
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
      • A Somewhat Different Case: H2SO4
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
    • 16-7 Simultaneous or Consecutive Acid–Base Reactions: A General Approach
    • 16-8 Ions as Acids and Bases
      • Hydrolysis
      • The pH of Salt Solutions
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
    • 16-9 Qualitative Aspects of Acid–Base Reactions
    • 16-10 Molecular Structure and Acid–Base Behaviors
      • Strengths of Binary Acids
      • Strengths of Oxoacids
      • Strengths of Organic Acids
        • Analyze
        • Assess
        • Practice Example A:
        • Practice Example B:
      • Strengths of Amines as Bases
      • Rationalization of Acid Strengths: An Alternative Approach
    • 16-11 Lewis Acids and Bases
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
    • Summary
    • Integrative Example
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
    • Exercises
      • Brønsted-Lowry Theory of Acids and Bases
      • Strong Acids, Strong Bases, and pH
      • Weak Acids, Weak Bases, and pH
      • Percent Ionization
      • Polyprotic Acids
      • Ions as Acids and Bases (Hydrolysis)
      • Molecular Structure and Acid–Base Behavior
      • Lewis Theory of Acids and Bases
    • Integrative and Advanced Exercises
    • Feature Problems
    • Self-Assessment Exercises
  • 17 Additional Aspects of Acid–Base Equilibria
    • Contents
    • Learning Objectives
    • 17-1 Common-Ion Effect in Acid–Base Equilibria
      • Solutions of Weak Acids and Strong Acids
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
      • Solutions of Weak Acids and Their Salts
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
      • Solutions of Weak Bases and Their Salts
    • 17-2 Buffer Solutions
      • Recognizing a Buffer Solution
      • How a Buffer Works
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
      • Calculating the pH of a Buffer Solution
        • Analyze
        • Assess
        • Practice Example A:
        • Practice Example B:
      • An Equation for Buffer Solutions: The Henderson–Hasselbalch Equation
      • Preparing Buffer Solutions
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
      • Calculating pH Changes in Buffer Solutions
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
      • Buffer Capacity and Buffer Range
      • Applications of Buffer Solutions
    • 17-3 Acid–Base Indicators
      • Applications
    • 17-4 Neutralization Reactions and Titration Curves
      • The Millimole
      • Titration of a Strong Acid with a Strong Base
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
        • Titration of a Weak Acid with a Strong Base
          • Analyze
          • Solve
          • Assess
          • Practice Example A:
          • Practice Example B:
        • Titration of a Weak Polyprotic Acid
      • 17-5 Solutions of Salts of Polyprotic Acids
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
    • 17-6 Acid–Base Equilibrium Calculations: A Summary
    • Summary
    • Integrative Example
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
    • Exercises
      • The Common-Ion Effect
      • Buffer Solutions
      • Acid–Base Indicators
      • Neutralization Reactions
      • Titration Curves
      • Salts of Polyprotic Acids
      • General Acid—Base Equilibria
    • Integrative and Advanced Exercises
    • Feature Problems
    • Self-Assessment Exercises
  • 18 Solubility and Complex-Ion Equilibria
    • Contents
    • Learning Objectives
    • 18-1 Solubility Product Constant, Ksp
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
    • 18-2 Relationship Between Solubility and Ksp
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
    • 18-3 Common-Ion Effect in Solubility Equilibria
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
    • 18-4 Limitations of the Ksp Concept
      • The Diverse Noncommon Ion Effect: The Salt Effect
      • Incomplete Dissociation of Solute into Ions
      • Simultaneous Equilibria
      • Assessing the Limitations of Ksp
    • 18-5 Criteria for Precipitation and Its Completeness
      • Analyze
      • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
    • 18-6 Fractional Precipitation
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
    • 18-7 Solubility and pH
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
    • 18-8 Equilibria Involving Complex Ions
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
    • 18-9 Qualitative Cation Analysis
      • Cation Group 1: The Chloride Group
      • Cation Groups 2 and 3: Equilibria Involving Hydrogen Sulfide
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
      • Dissolving Metal Sulfides
    • Summary
    • Integrative Example
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
    • Exercises
      • Ksp and Solubility
      • The Common-Ion Effect
      • Criteria for Precipitation from Solution
      • Completeness of Precipitation
      • Fractional Precipitation
      • Solubility and pH
      • Complex-Ion Equilibria
      • Precipitation and Solubilities of Metal Sulfides
      • Qualitative Cation Analysis
    • Integrative and Advanced Exercises
    • Feature Problems
    • Self-Assessment Exercises
  • 19 Electrochemistry
    • Contents
    • Learning Objectives
    • 19-1 Electrode Potentials and Their Measurement
      • Cell Diagrams and Terminology
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
    • 19-2 Standard Electrode Potentials
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
    • 19-3 Ecell, ?rG, and K
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
      • Combining Reduction Half-Cell Equations
      • Spontaneous Change in Oxidation-Reduction Reactions
      • The Behavior of Metals Toward Acids
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
      • The Relationship Between E°cell and K
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
    • 19-4 Ecell as a Function of Concentrations
      • Analyze
      • Solve
        • Assess
        • Practice Example A:
          • Practice Example B:
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
      • Concentration Cells
      • Measurement of Ksp
      • Alternative Standard Electrodes
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
      • The Glass Electrode and the Electrochemical Measurement of pH
    • 19-5 Batteries: Producing Electricity Through Chemical Reactions
      • The Leclanché (Dry) Cell
      • The Lead-Acid (Storage) Battery
      • The Silver-Zinc Cell: A Button Battery
      • The Nickel-Cadmium Cell: A Rechargeable Battery
      • The Lithium-Ion Battery
      • Reserve Battery
      • Fuel Cells
      • Air Batteries
    • 19-6 Corrosion: Unwanted Voltaic Cells
    • 19-7 Electrolysis: Causing Nonspontaneous Reactions to Occur
      • Predicting Electrolysis Reactions
      • Quantitative Aspects of Electrolysis
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
    • 19-8 Industrial Electrolysis Processes
      • Electrorefining
      • Electroplating
      • Electrosynthesis
      • The Chlor-Alkali Process
    • Summary
    • Integrative Example
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • Exercises
      • Standard Electrode Potentials
      • Predicting Oxidation-Reduction Reactions
      • Galvanic Cells
      • ?rG°, E°cell, and K
      • Concentration Dependence of Ecell—The Nernst Equation
      • Batteries and Fuel Cells
      • Electrochemical Mechanism of Corrosion
      • Electrolysis Reactions
    • Integrative and Advanced Exercises
    • Feature Problems
    • Self-Assessment Exercises
  • 20 Chemical Kinetics
    • Contents
    • Learning Objectives
    • 20-1 Rate of a Chemical Reaction
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
    • 20-2 Measuring Reaction Rates
      • Following a Chemical Reaction
      • Rate of Reaction Expressed as Concentration Change over Time
      • Rate of Reaction Expressed as the Slope of a Tangent Line
      • Initial Rate of Reaction
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
    • 20-3 Effect of Concentration on Reaction Rates: The Rate Law
      • Method of Initial Rates
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
    • 20-4 Zero-Order Reactions
    • 20-5 First-Order Reactions
      • An Integrated Rate Law for a First-Order Reaction
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
      • Reactions Involving Gases
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
      • Examples of First-Order Reactions
    • 20-6 Second-Order Reactions
      • Pseudo-First-Order Reactions
    • 20-7 Reaction Kinetics: A Summary
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
    • 20-8 Theoretical Models for Chemical Kinetics
      • Collision Theory
      • Transition State Theory
    • 20-9 The Effect of Temperature on Reaction Rates
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
    • 20-10 Reaction Mechanisms
      • Elementary Processes
      • Multistep Reactions and the Rate-Determining Step
      • A Mechanism with a Slow Step Followed by a Fast Step
      • A Mechanism with a Fast Reversible First Step Followed by a Slow Step
      • The Steady-State Approximation
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
      • Relationship Between the Equilibrium Constant and Rate Constants
      • Smog—An Environmental Problem with Roots in Chemical Kinetics
    • 20-11 Catalysis
      • Homogeneous Catalysis
      • Heterogeneous Catalysis
      • The Catalyzed Decomposition of Hydrogen Peroxide
      • Enzymes as Catalysts
    • Summary
    • Integrative Example
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
    • Exercises
      • Rates of Reactions
      • Method of Initial Rates
      • First-Order Reactions
      • Reactions of Various Orders
      • Collision Theory; Activation Energy
      • Effect of Temperature on Rates of Reaction
      • Catalysis
      • Units of Measurement
    • Integrative and Advanced Exercises
    • Feature Problems
    • Self-Assessment Exercises
  • 21 Chemistry of the Main-Group Elements I: Groups 1, 2, 13, and 14
    • Contents
    • Learning Objectives
    • 21-1 Periodic Trends and Charge Density
    • 21-2 Group 1: The Alkali Metals
      • Physical Properties of the Alkali Metals
        • Flame Colors
        • Densities and Melting Points
        • Electrode Potentials
      • Production and Uses of the Alkali Metals
      • Group 1 Compounds
        • Hydration of Salts
          • Analyze
          • Solve
          • Assess
          • Practice Example A:
          • Practice Example B:
        • Halides
        • Alkali Metal Hydrides
        • Oxides and Hydroxides
        • Carbonates and Sulfates
        • Alkali Metal Complexes
        • Alkali Metal Detergents and Soaps
    • 21-3 Group 2: The Alkaline Earth Metals
      • Production and Uses of the Alkaline Earth Metals
      • Group 2 Compounds
        • Halides
        • Oxides and Hydroxides
        • Hydration of Salts
        • Carbonates and Sulfates
      • Diagonal Relationship of Lithium and Magnesium
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
    • 21-4 Group 13: The Boron Family
      • Boron and Its Compounds
        • Boron Hydrides
        • Other Boron Compounds
          • Analyze
          • Solve
          • Assess
          • Practice Example A:
          • Practice Example B:
      • Properties and Uses of Group 13 Metals
      • Oxidation States of Group 13 Metals
      • Aluminum
        • Production of Aluminum
        • Aluminum Halides
        • Aluminum Oxide and Hydroxide
        • Aluminum Sulfate and Alums
      • Diagonal Relationship of Beryllium and Aluminum
    • 21-5 Group 14: The Carbon Family
      • Carbon
        • Production and Uses of Carbon
        • Carbon Dioxide
        • Carbon Monoxide
        • Other Inorganic Carbon Compounds
      • Silicon
        • Production and Uses of Silicon
        • Oxides of Silicon; Silicates
      • Zeolites: An Important Class of Aluminosilicates
        • Silicates in Ceramics and Glass
        • Silanes and Silicones
        • Silicon Halides
        • Glass Making
      • Diagonal Relationship of Boron and Silicon
      • Properties and Uses of Tin and Lead
      • Compounds of Group 14 Metals
        • Oxides
        • Halides
        • Other Compounds
      • Lead Poisoning
    • Summary
    • Integrative Example
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • Exercises
      • Group 1: The Alkali Metals
      • Group 2: The Alkaline Earth Metals
      • Group 13: The Boron Family
      • Group 14: The Carbon Family
    • Integrative and Advanced Exercises
    • Feature Problems
    • Self-Assessment Exercises
  • 22 Chemistry of the Main-Group Elements II: Groups 18, 17, 16, 15, and Hydrogen
    • Contents
    • Learning Objectives
    • 22-1 Periodic Trends in Bonding
    • 22-2 Group 18: The Noble Gases
      • Occurrence
      • Properties and Uses
      • Xenon Compounds
    • 22-3 Group 17: The Halogens
      • Properties
      • Electrode Potential Diagrams
      • Production and Uses
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
      • Hydrogen Halides
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
      • Oxoacids and Oxoanions
      • Interhalogen Compounds
      • Polyhalide Ions
    • 22-4 Group 16: The Oxygen Family
      • Properties
      • Occurrence, Production, and Uses
        • Oxygen
        • Sulfur
        • Selenium and Tellurium
        • Polonium
      • Allotropy of Oxygen: Ozone
      • Allotropy and Polymorphism of Sulfur
      • Oxygen Compounds
      • Sulfur Compounds
        • Sulfur Dioxide and Sulfur Trioxide
        • Sulfuric Acid
        • Sulfates and Sulfites
        • Thiosulfates
      • Oxygen and Sulfur Halides
      • SO2 Emissions and the Environment
    • 22-5 Group 15: The Nitrogen Family
      • Metallic–Nonmetallic Character in Group 15
      • Occurrence, Production, and Uses
        • Nitrogen
        • Phosphorus
        • Arsenic, Antimony, and Bismuth
      • Nitrogen Compounds
        • Nitrides
        • Ammonia and Related Compounds
        • Other Hydrides of Nitrogen
      • Oxides of Nitrogen
        • Nitric Acid and Nitrates
      • Nitrogen Halides
      • Allotropes of Phosphorus
      • Phosphorus Compounds
        • Phosphine
        • Phosphorus Trichloride
        • Oxides of Phosphorus
        • Phosphoric Acid
      • Phosphorus and the Environment
    • 22-6 Hydrogen: A Unique Element
      • Occurrence and Preparation
      • Hydrogen Compounds
      • Uses of Hydrogen
      • Hydrogen and the Environment—A Hydrogen Economy
    • Summary
    • Integrative Example
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
    • Exercises
      • Periodic Trends in Bonding and Acid–Base Character of Oxides
      • The Noble Gases
      • The Halogens
      • Oxygen
      • Sulfur
      • Nitrogen Family
      • Hydrogen
    • Integrative and Advanced Exercises
    • Feature Problems
    • Self-Assessment Exercises
  • 23 The Transition Elements
    • Contents
    • Learning Objectives
    • 23-1 General Properties
      • Atomic (Metallic) Radii
      • Electron Configurations and Oxidation States
      • Ionization Energies and Electrode Potentials
      • Ionic and Covalent Compounds
      • Catalytic Activity
      • Color and Magnetism
      • Comparison of Transition and Main-Group Elements
    • 23-2 Principles of Extractive Metallurgy
      • Concentration
      • Roasting
      • Reduction
      • Refining
      • Zone Refining
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
      • Thermodynamics of Extractive Metallurgy
      • Alternative Methods in Extractive Metallurgy
      • Metallurgy of Copper
      • Pyrometallurgical Processes
      • Hydrometallurgical Processes
    • 23-3 Metallurgy of Iron and Steel
      • Pig Iron
      • Steel
    • 23-4 First-Row Transition Metal Elements: Scandium to Manganese
      • Scandium
      • Titanium
      • Vanadium
      • Chromium
        • Analyze
        • Assess
        • Practice Example A:
        • Practice Example B:
      • Manganese
    • 23-5 The Iron Triad: Iron, Cobalt, and Nickel
      • Oxidation States
      • Some Reactions of the Iron Triad Elements
    • 23-6 Group 11: Copper, Silver, and Gold
    • 23-7 Group 12: Zinc, Cadmium, and Mercury
      • Uses of the Group 12 Metals and Their Compounds
      • Mercury and Cadmium Poisoning
    • 23-8 Lanthanides
    • 23-9 High-Temperature Superconductors
    • Summary
    • Integrative Example
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
    • Exercises
      • Properties of the Transition Elements
      • Reactions of Transition Metals and Their Compounds
      • Extractive Metallurgy
      • Oxidation–Reduction
      • Chromium and Chromium Compounds
      • The Iron Triad
      • Group 11 Metals
      • Group 12 Metals
    • Integrative and Advanced Exercises
    • Feature Problems
    • Self-Assessment Exercises
  • 24 Complex Ions and Coordination Compounds
    • Contents
    • Learning Objectives
    • 24-1 Werner's Theory of Coordination Compounds: An Overview
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
    • 24-2 Ligands
    • 24-3 Nomenclature
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
    • 24-4 Isomerism
      • Ionization Isomerism
      • Coordination Isomerism
      • Linkage Isomerism
      • Geometric Isomerism
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
      • Optical Isomerism
      • Isomerism and Werner’s Theory
    • 24-5 Bonding in Complex Ions: Crystal Field Theory
    • 24-6 Magnetic Properties of Coordination Compounds and Crystal Field Theory
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
    • 24-7 Color and the Colors of Complexes
      • Primary, Secondary, and Complementary Colors
      • Colored Solutions
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • 24-8 Aspects of Complex-Ion Equilibria
    • 24-9 Acid–Base Reactions of Complex Ions
    • 24-10 Some Kinetic Considerations
    • 24-11 Applications of Coordination Chemistry
      • Cisplatin: A Cancer-Fighting Drug
      • Hydrates
      • Stabilization of Oxidation States
      • Photography: Fixing a Photographic Film
      • Qualitative Analysis
      • Sequestering Metal Ions
      • Biological Applications: Porphyrins
    • Summary
    • Integrative Example
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
    • Exercises
      • Nomenclature
      • Bonding and Structure in Complex Ions
      • Isomerism
      • Crystal Field Theory
      • Complex-Ion Equilibria
      • Acid–Base Properties
      • Applications
    • Integrative and Advanced Exercises
    • Feature Problems
      • Self-Assessment Exercises
  • 25 Nuclear Chemistry
    • Contents
    • Learning Objectives
    • 25-1 Radioactivity
      • Alpha Particles
      • Beta Particles
      • Electron Capture
      • Gamma Rays
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 25-2 Naturally Occurring Radioactive Isotopes
    • 25-3 Nuclear Reactions and Artificially Induced Radioactivity
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
    • 25-4 Transuranium Elements
    • 25-5 Rate of Radioactive Decay
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
    • 25-6 Energetics of Nuclear Reactions
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
    • 25-7 Nuclear Stability
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
    • 25-8 Nuclear Fission
      • Nuclear Reactors
      • Breeder Reactors
    • 25-9 Nuclear Fusion
    • 25-10 Effect of Radiation on Matter
      • Radiation Detectors
      • Effect of Ionizing Radiation on Living Matter
      • Radiation Dosage
      • An Environmental Issue Involving Radon
    • 25-11 Applications of Radioisotopes
      • Cancer Therapy
      • Radioactive Tracers
      • Structures and Mechanisms
      • Analytical Chemistry
      • Radiation Processing
    • Summary
    • Integrative Example
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • Exercises
      • The Scientific Method
      • Radioactive Decay Series
      • Nuclear Reactions
      • Rate of Radioactive Decay
      • Age Determinations with Radioisotopes
      • Energetics of Nuclear Reactions
      • Nuclear Stability
      • Fission and Fusion
      • Effect of Radiation on Matter
      • Applications of Radioisotopes
    • Integrative and Advanced Exercises
    • Feature Problems
    • Self-Assessment Exercises
  • 26 Structures of Organic Compounds
    • Contents
    • Learning Objectives
    • 26-1 Organic Compounds and Structures: An Overview
      • Constitutional Isomerism in Organic Compounds
      • Nomenclature
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
      • Functional Groups
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
    • 26-2 Alkanes
      • Conformations
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
      • Preparation of Alkanes
      • Alkanes from Petroleum
    • 26-3 Cycloalkanes
      • Ring Strain in Cycloalkanes
      • Cis–-Trans Isomerism in Disubstituted Cycloalkanes
      • A Closer Look at Cyclohexane
        • Analyze
        • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
    • 26-4 Stereoisomerism in Organic Compounds
      • Chirality
      • Analyze
      • Solve
      • Assess
      • Practice Example A:
      • Practice Example B:
      • Analyze
      • Solve
        • Assess
        • Practice Example A:
        • Practice Example B:
      • Naming Enantiomers: The R, S System of Nomenclature
        • Analyze
        • Solve
          • Assess
          • Practice Example A:
          • Practice Example B:
    • 26-5 Alkenes and Alkynes
      • Stereoisomerism in Alkenes
      • Preparation and Uses of Alkenes and Alkynes
      • Naming the Stereoisomers of Highly Substituted Alkenes: The E, Z System of Nomenclature
        • Analyze
        • Solve
        • Analyze
        • Practice Example A:
        • Practice Example B:
    • 26-6 Aromatic Hydrocarbons
      • Characteristics of Aromatic Hydrocarbons
      • Naming Aromatic Hydrocarbons
      • Uses of Aromatic Hydrocarbons
    • 26-7 Organic Compounds Containing Functional Groups
      • Alcohols and Phenols
      • Ethers
      • Aldehydes and Ketones
      • Carboxylic Acids
      • Esters
      • Amides
      • Amines
      • Heterocyclic Compounds
    • 26-8 From Molecular Formula to Molecular Structure
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • Summary
    • Integrative Example
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • Exercises
      • Organic Structures
      • Isomers
      • Functional Groups
      • Nomenclature and Formulas
      • Alkanes and Cycloalkanes
      • Alkenes
      • Aromatic Compounds
      • Organic Stereochemistry
      • Structures and Properties of Organic Compounds
    • Integrative and Advanced Exercises
    • Feature Problems
    • Self-Assessment Exercises
  • 27 Reactions of Organic Compounds
    • Contents
    • Learning Objectives
    • 27-1 Organic Reactions: An Introduction
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • 27-2 Introduction to Nucleophilic Substitution Reactions
      • The SN1 and SN2 Mechanisms of Nucleophilic Substitution Reactions
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
      • Solvent Effects in SN1 and SN2 Reactions
      • Factors Affecting Nucleophilicity
      • A Summary of SN1 and SN2 Reactions
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 27-3 Introduction to Elimination Reactions
      • The E1 and E2 Mechanisms
      • Predicting the Major Elimination Product
      • Substitution and Elimination Reactions: A Summary
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 27-4 Reactions of Alcohols
      • Substitution and Elimination Reactions of Alcohols
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 27-5 Introduction to Addition Reactions: Reactions of Alkenes
      • Addition of Hydrogen: Hydrogenation
      • Addition of Hydrogen Halides (HX)
      • Addition of Water: Hydration
      • Addition of Halogens: Halogenation
    • 27-6 Electrophilic Aromatic Substitution
      • Nitration: Substitution of —H with —NO2
      • Halogenation
      • Ortho, Para-directing Substituents and Meta-directing Substituents
        • Analyze
        • Solve
        • Assess
          • Practice Example A:
          • Practice Example B:
    • 27-7 Reactions of Alkanes
    • 27-8 Polymers and Polymerization Reactions
      • An Overview
      • Chain-Reaction Polymerization
      • Step-Reaction Polymerization
      • Stereospecific Polymers
    • 27-9 Synthesis of Organic Compounds
    • Summary
    • Integrative Example
      • Analyze
      • Solve
      • Assess
        • Practice Example A:
        • Practice Example B:
    • Exercises
      • Types of Organic Reactions
      • Substitution and Elimination Reactions
      • Alcohols and Alkenes
      • Electrophilic Aromatic Substitution
      • Reactions of Alkanes
      • Polymerization Reactions
      • Synthesis of Organic Compounds
    • Integrative and Advanced Exercises
    • Feature Problems
    • Self-Assessment Exercises
  • Appendix A Mathematical Operations
    • A-1 Exponential Arithmetic
      • Addition and Subtraction
      • Multiplication
      • Division
      • Raising an Exponential Number to a Power
      • Extracting the Root of an Exponential Number
    • A-2 Logarithms
      • Some Useful Relationships
      • Significant Figures in Logarithms
      • Natural Logarithms
    • A-3 Algebraic Operations
      • Quadratic Equations
      • The Method of Successive Approximations
    • A-4 Graphs
    • A-5 Using Conversion Factors (Dimensional Analysis)
  • Appendix B Some Basic Physical Concepts
    • B-1 Velocity and Acceleration
    • B-2 Force and Work
    • B-3 Energy
    • B-4 Magnetism
    • B-5 Static Electricity
    • B-6 Current Electricity
    • B-7 Electromagnetism
  • Appendix C SI Units
    • C-1 SI Base Units
    • C-2 SI Prefixes
    • C-3 Derived SI Units
    • C-4 Units to Be Discouraged or Abandoned
  • Appendix D Data Tables
  • Appendix E Concept Maps
    • E-1 How to Construct a Concept Map
  • Appendix F Glossary
  • Appendix G Answers to Practice Examples and Selected Exercises
  • Appendix H Answers to Concept Assessment Questions
  • Index
    • A
    • B
    • C
    • D
    • E
    • F
    • G
    • H
    • I
    • J
    • K
    • L
    • M
    • N
    • O
    • P
    • Q
    • R
    • S
    • T
    • U
    • V
    • W
    • X
    • Y
    • Z

    UM RAFBÆKUR Á HEIMKAUP.IS

    Bókahillan þín er þitt svæði og þar eru bækurnar þínar geymdar. Þú kemst í bókahilluna þína hvar og hvenær sem er í tölvu eða snjalltæki. Einfalt og þægilegt!

    Rafbók til eignar
    Rafbók til eignar þarf að hlaða niður á þau tæki sem þú vilt nota innan eins árs frá því bókin er keypt.

    Þú kemst í bækurnar hvar sem er
    Þú getur nálgast allar raf(skóla)bækurnar þínar á einu augabragði, hvar og hvenær sem er í bókahillunni þinni. Engin taska, enginn kyndill og ekkert vesen (hvað þá yfirvigt).

    Auðvelt að fletta og leita
    Þú getur flakkað milli síðna og kafla eins og þér hentar best og farið beint í ákveðna kafla úr efnisyfirlitinu. Í leitinni finnur þú orð, kafla eða síður í einum smelli.

    Glósur og yfirstrikanir
    Þú getur auðkennt textabrot með mismunandi litum og skrifað glósur að vild í rafbókina. Þú getur jafnvel séð glósur og yfirstrikanir hjá bekkjarsystkinum og kennara ef þeir leyfa það. Allt á einum stað.

    Hvað viltu sjá? / Þú ræður hvernig síðan lítur út
    Þú lagar síðuna að þínum þörfum. Stækkaðu eða minnkaðu myndir og texta með multi-level zoom til að sjá síðuna eins og þér hentar best í þínu námi.



    Fleiri góðir kostir
    - Þú getur prentað síður úr bókinni (innan þeirra marka sem útgefandinn setur)
    - Möguleiki á tengingu við annað stafrænt og gagnvirkt efni, svo sem myndbönd eða spurningar úr efninu
    - Auðvelt að afrita og líma efni/texta fyrir t.d. heimaverkefni eða ritgerðir
    - Styður tækni sem hjálpar nemendum með sjón- eða heyrnarskerðingu
Eiginleikar
Vörumerki: Pearson
Vörunúmer: 9780134419022
Taka af óskalista
Setja á óskalista

Umsagnir

Engar umsagnir
Lesa fleiri umsagnir
5.990 kr.