
Lýsing:
Score your highest in econometrics? Easy. Econometrics can prove challenging for many students unfamiliar with the terms and concepts discussed in a typical econometrics course. Econometrics For Dummies eliminates that confusion with easy-to-understand explanations of important topics in the study of economics. Econometrics For Dummies breaks down this complex subject and provides you with an easy-to-follow course supplement to further refine your understanding of how econometrics works and how it can be applied in real-world situations.
An excellent resource for anyone participating in a college or graduate level econometrics course Provides you with an easy-to-follow introduction to the techniques and applications of econometrics Helps you score high on exam day If you're seeking a degree in economics and looking for a plain-English guide to this often-intimidating course, Econometrics For Dummies has you covered. .
Annað
- Höfundur: Roberto Pedace
- Útgáfa:1
- Útgáfudagur: 2013-05-31
- Hægt að prenta út 10 bls.
- Hægt að afrita 2 bls.
- Format:Page Fidelity
- ISBN 13: 9781118533888
- Print ISBN: 9781118533840
- ISBN 10: 1118533887
Efnisyfirlit
- About the Author
- Contents at a Glance
- Table of Contents
- Introduction
- About This Book
- Foolish Assumptions
- Icons Used in This Book
- Beyond the Book
- Where to Go from Here
- Part I: Getting Started with Econometrics
- Chapter 1: Econometrics: The Economist’s Approach to Statistical Analysis
- Evaluating Economic Relationships
- Applying Statistical Methods to Economic Problems
- Using Econometric Software: An Introduction to STATA
- Chapter 2: Getting the Hang of Probability
- Reviewing Random Variables and Probability Distributions
- Understanding Summary Characteristics of Random Variables
- Chapter 3: Making Inferences and Testing Hypotheses
- Getting to Know Your Data with Descriptive Statistics
- Laying the Groundwork of Prediction with the Normal and Standard Normal Distributions
- Working with Parts of the Population: Sampling Distributions
- Making Inferences and Testing Hypotheses with Probability Distributions
- Chapter 1: Econometrics: The Economist’s Approach to Statistical Analysis
- Chapter 4: Understanding the Objectives of Regression Analysis
- Making a Case for Causality
- Getting Acquainted with the Population Regression Function (PRF)
- Collecting and Organizing Data for Regression Analysis
- Chapter 5: Going Beyond Ordinary with the Ordinary Least Squares Technique
- Defining and Justifying the Least Squares Principle
- Estimating the Regression Function and the Residuals
- Obtaining Estimates of the Regression Parameters
- Interpreting Regression Coefficients
- Measuring Goodness of Fit
- Chapter 6: Assumptions of OLS Estimation and the Gauss-Markov Theorem
- Characterizing the OLS Assumptions
- Relying on the CLRM Assumptions: The Gauss-Markov Theorem
- Chapter 7: The Normality Assumption and Inference with OLS
- Describing the Role of the Normality Assumption
- Testing the Significance of Individual Regression Coefficients
- Analyzing Variance to Determine Overall or Joint Significance
- Applying Forecast Error to OLS Predictions
- Chapter 8: Functional Form, Specification, and Structural Stability
- Employing Alternative Functions
- Giving Linearity to Nonlinear Models
- Checking for Misspecification
- Chapter 9: Regression with Dummy Explanatory Variables
- Numbers Please! Quantifying Qualitative Information
- Finding Average Differences by Using a Dummy Variable
- Combining Quantitative and Qualitative Data in the Regression Model
- Interacting Quantitative and Qualitative Variables
- Interacting Two (or More) Qualitative Characteristics
- Segregate and Integrate: Testing for Significance
- Chapter 10: Multicollinearity
- Distinguishing between the Types of Multicollinearity
- Rules of Thumb for Identifying Multicollinearity
- Knowing When and How to Resolve Multicollinearity Issues
- Chapter 11: Heteroskedasticity
- Distinguishing between Homoskedastic and Heteroskedastic Disturbances
- Detecting Heteroskedasticity with Residual Analysis
- Correcting Your Regression Model for the Presence of Heteroskedasticity
- Chapter 12: Autocorrelation
- Examining Patterns of Autocorrelation
- Illustrating the Effect of Autoregressive Errors
- Analyzing Residuals to Test for Autocorrelation
- Remedying Harmful Autocorrelation
- Chapter 13: Qualitative Dependent Variables
- Modeling Discrete Outcomes with the Linear Probability Model (LPM)
- Presenting the Three Main LPM Problems
- Specifying Appropriate Nonlinear Functions: The Probit and Logit Models
- Using Maximum Likelihood (ML) Estimation
- Interpreting Probit and Logit Estimates
- Chapter 14: Limited Dependent Variable Models
- The Nitty-Gritty of Limited Dependent Variables
- Modifying Regression Analysis for Limited Dependent Variables
- Chapter 15: Static and Dynamic Models
- Using Contemporaneous and Lagged Variables in Regression Analysis
- Projecting Time Trends with OLS
- Using OLS for Seasonal Adjustments
- Chapter 16: Diving into Pooled Cross-Section Analysis
- Adding a Dynamic Time Element to the Mix
- Using Experiments to Estimate Policy Effects with Pooled Cross Sections
- Chapter 17: Panel Econometrics
- Estimating the Uniqueness of Each Individual Unit
- Increasing the Efficiency of Estimation with Random Effects
- Testing Efficiency against Consistency with the Hausman Test
- Chapter 18: Ten Components of a Good Econometrics Research Project
- Introducing Your Topic and Posing the Primary Question of Interest
- Discussing the Relevance and Importance of Your Topic
- Reviewing the Existing Literature
- Describing the Conceptual or Theoretical Framework
- Explaining Your Econometric Model
- Discussing the Estimation Method(s)
- Providing a Detailed Description of Your Data
- Constructing Tables and Graphs to Display Your Results
- Interpreting the Reported Results
- Summarizing What You Learned
- Chapter 19: Ten Common Mistakes in Applied Econometrics
- Failing to Use Your Common Sense and Knowledge of Economic Theory
- Asking the Wrong Questions First
- Ignoring the Work and Contributions of Others
- Failing to Familiarize Yourself with the Data
- Making It Too Complicated
- Being Inflexible to Real-World Complications
- Looking the Other Way When You See Bizarre Results
- Obsessing over Measures of Fit and Statistical Significance
- Forgetting about Economic Significance
- Assuming Your Results Are Robust
- The Standard Normal Distribution
- t-Distribution
- Chi-Squared Distribution
- F-Distribution
- Durbin-Watson d-Statistic
UM RAFBÆKUR Á HEIMKAUP.IS
Bókahillan þín er þitt svæði og þar eru bækurnar þínar geymdar. Þú kemst í bókahilluna þína hvar og hvenær sem er í tölvu eða snjalltæki. Einfalt og þægilegt!Rafbók til eignar
Rafbók til eignar þarf að hlaða niður á þau tæki sem þú vilt nota innan eins árs frá því bókin er keypt.
Þú kemst í bækurnar hvar sem er
Þú getur nálgast allar raf(skóla)bækurnar þínar á einu augabragði, hvar og hvenær sem er í bókahillunni þinni. Engin taska, enginn kyndill og ekkert vesen (hvað þá yfirvigt).
Auðvelt að fletta og leita
Þú getur flakkað milli síðna og kafla eins og þér hentar best og farið beint í ákveðna kafla úr efnisyfirlitinu. Í leitinni finnur þú orð, kafla eða síður í einum smelli.
Glósur og yfirstrikanir
Þú getur auðkennt textabrot með mismunandi litum og skrifað glósur að vild í rafbókina. Þú getur jafnvel séð glósur og yfirstrikanir hjá bekkjarsystkinum og kennara ef þeir leyfa það. Allt á einum stað.
Hvað viltu sjá? / Þú ræður hvernig síðan lítur út
Þú lagar síðuna að þínum þörfum. Stækkaðu eða minnkaðu myndir og texta með multi-level zoom til að sjá síðuna eins og þér hentar best í þínu námi.
Fleiri góðir kostir
- Þú getur prentað síður úr bókinni (innan þeirra marka sem útgefandinn setur)
- Möguleiki á tengingu við annað stafrænt og gagnvirkt efni, svo sem myndbönd eða spurningar úr efninu
- Auðvelt að afrita og líma efni/texta fyrir t.d. heimaverkefni eða ritgerðir
- Styður tækni sem hjálpar nemendum með sjón- eða heyrnarskerðingu
- Gerð : 208
- Höfundur : 10582
- Útgáfuár : 2013
- Leyfi : 379