Condensed Matter Physics

Lýsing:
Now updated—the leading single-volume introduction to solid state and soft condensed matter physics This Second Edition of the unified treatment of condensed matter physics keeps the best of the first, providing a basic foundation in the subject while addressing many recent discoveries. Comprehensive and authoritative, it consolidates the critical advances of the past fifty years, bringing together an exciting collection of new and classic topics, dozens of new figures, and new experimental data.
This updated edition offers a thorough treatment of such basic topics as band theory, transport theory, and semiconductor physics, as well as more modern areas such as quasicrystals, dynamics of phase separation, granular materials, quantum dots, Berry phases, the quantum Hall effect, and Luttinger liquids. In addition to careful study of electron dynamics, electronics, and superconductivity, there is much material drawn from soft matter physics, including liquid crystals, polymers, and fluid dynamics.
Provides frequent comparison of theory and experiment, both when they agree and when problems are still unsolved Incorporates many new images from experiments Provides end-of-chapter problems including computational exercises Includes more than fifty data tables and a detailed forty-page index Offers a solutions manual for instructors Featuring 370 figures and more than 1,000 recent and historically significant references, this volume serves as a valuable resource for graduate and undergraduate students in physics, physics professionals, engineers, applied mathematicians, materials scientists, and researchers in other fields who want to learn about the quantum and atomic underpinnings of materials science from a modern point of view.
Annað
- Höfundur: Michael P. Marder
- Útgáfa:2
- Útgáfudagur: 2010-11-17
- Hægt að prenta út 10 bls.
- Hægt að afrita 2 bls.
- Format:Page Fidelity
- ISBN 13: 9780470949948
- Print ISBN: 9780470617984
- ISBN 10: 0470949945
Efnisyfirlit
- Condensed Matter Physics
- Contents
- Preface
- References
- I ATOMIC STRUCTURE
- 1 The Idea of Crystals
- 1.1 Introduction
- 1.1.1 Why are Solids Crystalline?
- 1.2 Two-Dimensional Lattices
- 1.2.1 Bravais Lattices
- 1.2.2 Enumeration of Two-Dimensional Bravais Lattices
- 1.2.3 Lattices with Bases
- 1.2.4 Primitive Cells
- 1.2.5 Wigner–Seitz Cells
- 1.3 Symmetries
- 1.3.1 The Space Group
- 1.3.2 Translation and Point Groups
- 1.3.3 Role of Symmetry
- Problems
- References
- 1.1 Introduction
- 2 Three-Dimensional Lattices
- 2.1 Introduction
- 2.2 Monatomic Lattices
- 2.2.1 The Simple Cubic Lattice
- 2.2.2 The Face-Centered Cubic Lattice
- 2.2.3 The Body-Centered Cubic Lattice
- 2.2.4 The Hexagonal Lattice
- 2.2.5 The Hexagonal Close-Packed Lattice
- 2.2.6 The Diamond Lattice
- 2.3 Compounds
- 2.3.1 Rocksalt—Sodium Chloride
- 2.3.2 Cesium Chloride
- 2.3.3 Fluorite—Calcium Fluoride
- 2.3.4 Zincblende—Zinc Sulfide
- 2.3.5 Wurtzite—Zinc Oxide
- 2.3.6 Perovskite—Calcium Titanate
- 2.4 Classification of Lattices by Symmetry
- 2.4.1 Fourteen Bravais Lattices and Seven Crystal Systems
- 2.5 Symmetries of Lattices with Bases
- 2.5.1 Thirty-Two Crystallographic Point Groups
- 2.5.2 Two Hundred Thirty Distinct Lattices
- 2.6 Some Macroscopic Implications of Microscopic Symmetries
- 2.6.1 Pyroelectricity
- 2.6.2 Piezoelectricity
- 2.6.3 Optical Activity
- Problems
- References
- 3 Scattering and Structures
- 3.1 Introduction
- 3.2 Theory of Scattering from Crystals
- 3.2.1 Special Conditions for Scattering
- 3.2.2 Elastic Scattering from Single Atom
- 3.2.3 Wave Scattering from Many Atoms
- 3.2.4 Lattice Sums
- 3.2.5 Reciprocal Lattice
- 3.2.6 Miller Indices
- 3.2.7 Scattering from a Lattice with a Basis
- 3.3 Experimental Methods
- 3.3.1 Laue Method
- 3.3.2 Rotating Crystal Method
- 3.3.3 Powder Method
- 3.4 Further Features of Scattering Experiments
- 3.4.1 Interaction of X-Rays with Matter
- 3.4.2 Production of X-Rays
- 3.4.3 Neutrons
- 3.4.4 Electrons
- 3.4.5 Deciphering Complex Structures
- 3.4.6 Accuracy of Structure Determinations
- 3.5 Correlation Functions
- 3.5.1 Why Bragg Peaks Survive Atomic Motions
- 3.5.2 Extended X-Ray Absorption Fine Structure (EXAFS)
- 3.5.3 Dynamic Light Scattering
- 3.5.4 Application to Dilute Solutions
- Problems
- References
- 4 Surfaces and Interfaces
- 4.1 Introduction
- 4.2 Geometry of Interfaces
- 4.2.1 Coherent and Commensurate Interfaces
- 4.2.2 Stacking Period and Interplanar Spacing
- 4.2.3 Other Topics in Surface Structure
- 4.3 Experimental Observation and Creation of Surfaces
- 4.3.1 Low-Energy Electron Diffraction (LEED)
- 4.3.2 Reflection High-Energy Electron Diffraction (RHEED)
- 4.3.3 Molecular Beam Epitaxy (MBE)
- 4.3.4 Field Ion Microscopy (FIM)
- 4.3.5 Scanning Tunneling Microscopy (STM)
- 4.3.6 Atomic Force Microscopy (AFM)
- 4.3.7 High Resolution Electron Microscopy (HREM)
- Problems
- References
- 5 Beyond Crystals
- 5.1 Introduction
- 5.2 Diffusion and Random Variables
- 5.2.1 Brownian Motion and the Diffusion Equation
- 5.2.2 Diffusion
- 5.2.3 Derivation from Master Equation
- 5.2.4 Connection Between Diffusion and Random Walks
- 5.3 Alloys
- 5.3.1 Equilibrium Structures
- 5.3.2 Phase Diagrams
- 5.3.3 Superlattices
- 5.3.4 Phase Separation
- 5.3.5 Nonequilibrium Structures in Alloys
- 5.3.6 Dynamics of Phase Separation
- 5.4 Simulations
- 5.4.1 Monte Carlo
- 5.4.2 Molecular Dynamics
- 5.5 Liquids
- 5.5.1 Order Parameters and Long-and Short-Range Order
- 5.5.2 Packing Spheres
- 5.6 Glasses
- 5.7 Liquid Crystals
- 5.7.1 Nematics, Cholesterics, and Smectics
- 5.7.2 Liquid Crystal Order Parameter
- 5.8 Polymers
- 5.8.1 Ideal Radius of Gyration
- 5.9 Colloids and Diffusing-Wave Scattering
- 5.9.1 Colloids
- 5.9.2 Diffusing-Wave Spectroscopy
- 5.10 Quasicrystals
- 5.10.1 One-Dimensional Quasicrystal
- 5.10.2 Two-Dimensional Quasicrystals—Penrose Tiles
- 5.10.3 Experimental Observations
- 5.11 Fullerenes and nanotubes
- Problems
- References
- 1 The Idea of Crystals
- 6 The Free Fermi Gas and Single Electron Model
- 6.1 Introduction
- 6.2 Starting Hamiltonian
- 6.3 Densities of States
- 6.3.1 Definition of Density of States D
- 6.3.2 Results for Free Electrons
- 6.4 Statistical Mechanics of Noninteracting Electrons
- 6.5 Sommerfeld Expansion
- 6.5.1 Specific Heat of Noninteracting Electrons at Low Temperatures
- Problems
- References
- 7 Non–Interacting Electrons in a Periodic Potential
- 7.1 Introduction
- 7.2 Translational Symmetry—Bloch's Theorem
- 7.2.1 One Dimension
- 7.2.2 Bloch's Theorem in Three Dimensions
- 7.2.3 Formal Demonstration of Bloch's Theorem
- 7.2.4 Additional Implications of Bloch's Theorem
- 7.2.5 Van Hove Singularities
- 7.2.6 Kronig–Penney Model
- 7.3 Rotational Symmetry—Group Representations
- 7.3.1 Classes and Characters
- 7.3.2 Consequences of point group symmetries for Schrödinger's equation
- Problems
- References
- 8 Nearly Free and Tightly Bound Electrons
- 8.1 Introduction
- 8.2 Nearly Free Electrons
- 8.2.1 Degenerate Perturbation Theory
- 8.3 Brillouin Zones
- 8.3.1 Nearly Free Electron Fermi Surfaces
- 8.4 Tightly Bound Electrons
- 8.4.1 Linear Combinations of Atomic Orbitals
- 8.4.2 Wannier Functions
- 8.4.3 Geometric Phases
- 8.4.4 Tight Binding Model
- Problems
- References
- 9 Electron–Electron Interactions
- 9.1 Introduction
- 9.2 Hartree and Hartree–Fock Equations
- 9.2.1 Variational Principle
- 9.2.2 Hartree–Fock Equations
- 9.2.3 Numerical Implementation
- 9.2.4 Hartree–Fock Equations for Jellium
- 9.3 Density Functional Theory
- 9.3.1 Thomas–Fermi Theory
- 9.3.2 Stability of Matter
- 9.4 Quantum Monte Carlo
- 9.4.1 Integrals by Monte Carlo
- 9.4.2 Quantum Monte Carlo Methods
- 9.4.3 Physical Results
- 9.5 Kohn–Sham Equations
- Problems
- References
- 10 Realistic Calculations in Solids
- 10.1 Introduction
- 10.2 Numerical Methods
- 10.2.1 Pseudopotentials and Orthogonalized Planes Waves (OPW)
- 10.2.2 Linear Combination of Atomic Orbitals (LCAO)
- 10.2.3 Plane Waves
- 10.2.4 Linear Augmented Plane Waves (LAPW)
- 10.3 Definition of Metals, Insulators, and Semiconductors
- 10.4 Brief Survey of the Periodic Table
- 10.4.1 Nearly Free Electron Metals
- 10.4.2 Noble Gases
- 10.4.3 Semiconductors
- 10.4.4 Transition Metals
- 10.4.5 Rare Earths
- Problems
- References
- 11 Cohesion of Solids
- 11.1 Introduction
- 11.1.1 Radii of Atoms
- 11.2 Noble Gases
- 11.3 Ionic Crystals
- 11.3.1 Ewald Sums
- 11.4 Metals
- 11.4.1 Use of Pseudopotentials
- 11.5 Band Structure Energy
- 11.5.1 Peierls Distortion
- 11.5.2 Structural Phase Transitions
- 11.6 Hydrogen-Bonded Solids
- 11.7 Cohesive Energy from Band Calculations
- 11.8 Classical Potentials
- Problems
- References
- 11.1 Introduction
- 12 Elasticity
- 12.1 Introduction
- 12.2 Nonlinear Elasticity
- 12.2.1 Rubber Elasticity
- 12.2.2 Larger Extensions of Rubber
- 12.3 Linear Elasticity
- 12.3.1 Solids of Cubic Symmetry
- 12.3.2 Isotropic Solids
- 12.4 Other Constitutive Laws
- 12.4.1 Liquid Crystals
- 12.4.2 Granular Materials
- Problems
- References
- 13 Phonons
- 13.1 Introduction
- 13.2 Vibrations of a Classical Lattice
- 13.2.1 Classical Vibrations in One Dimension
- 13.2.2 Classical Vibrations in Three Dimensions
- 13.2.3 Normal Modes
- 13.2.4 Lattice with a Basis
- 13.3 Vibrations of a Quantum–Mechanical Lattice
- 13.3.1 Phonon Specific Heat
- 13.3.2 Einstein and Debye Models
- 13.3.3 Thermal Expansion
- 13.4 Inelastic Scattering from Phonons
- 13.4.1 Neutron Scattering
- 13.4.2 Formal Theory of Neutron Scattering
- 13.4.3 Averaging Exponentials
- 13.4.4 Evaluation of Structure Factor
- 13.4.5 Kohn Anomalies
- 13.5 The Mössbauer Effect
- Problems
- References
- 14 Dislocations and Cracks
- 14.1 Introduction
- 14.2 Dislocations
- 14.2.1 Experimental Observations of Dislocations
- 14.2.2 Force to Move a Dislocation
- 14.2.3 One-Dimensional Dislocations: Frenkel–Kontorova Model
- 14.3 Two-Dimensional Dislocations and Hexatic Phases
- 14.3.1 Impossibility of Crystalline Order in Two Dimensions
- 14.3.2 Orientational Order
- 14.3.3 Kosterlitz–Thouless–Berezinskii Transition
- 14.4 Cracks
- 14.4.1 Fracture of a Strip
- 14.4.2 Stresses Around an Elliptical Hole
- 14.4.3 Stress Intensity Factor
- 14.4.4 Atomic Aspects of Fracture
- Problems
- References
- 15 Fluid Mechanics
- 15.1 Introduction
- 15.2 Newtonian Fluids
- 15.2.1 Euler's Equation
- 15.2.2 Navier–Stokes Equation
- 15.3 Polymeric Solutions
- 15.4 Plasticity
- 15.5 Superfluid 4He
- 15.5.1 Two-Fluid Hydrodynamics
- 15.5.2 Second Sound
- 15.5.3 Direct Observation of Two Fluids
- 15.5.4 Origin of Superfluidity
- 15.5.5 Lagrangian Theory of Wave Function
- 15.5.6 Superfluid 3He
- Problems
- References
- 16 Dynamics of Bloch Electrons
- 16.1 Introduction
- 16.1.1 Drude Model
- 16.2 Semiclassical Electron Dynamics
- 16.2.1 Bloch Oscillations
- 16.2.2 K . P Method
- 16.2.3 Effective Mass
- 16.3 Noninteracting Electrons in an Electric Field
- 16.3.1 Zener Tunneling
- 16.4 Semiclassical Equations from Wave Packets
- 16.4.1 Formal Dynamics of Wave Packets
- 16.4.2 Dynamics from Lagrangian
- 16.5 Quantizing Semiclassical Dynamics
- 16.5.1 Wannier–Stark Ladders
- 16.5.2 de Haas–van Alphen Effect
- 16.5.3 Experimental Measurements of Fermi Surfaces
- Problems
- References
- 16.1 Introduction
- 17 Transport Phenomena and Fermi Liquid Theory
- 17.1 Introduction
- 17.2 Boltzmann Equation
- 17.2.1 Boltzmann Equation
- 17.2.2 Including Anomalous Velocity
- 17.2.3 Relaxation Time Approximation
- 17.2.4 Relation to Rate of Production of Entropy
- 17.3 Transport Symmetries
- 17.3.1 Onsager Relations
- 17.4 Thermoelectric Phenomena
- 17.4.1 Electrical Current
- 17.4.2 Effective Mass and Holes
- 17.4.3 Mixed Thermal and Electrical Gradients
- 17.4.4 Wiedemann–Franz Law
- 17.4.5 Thermopower—Seebeck Effect
- 17.4.6 Peltier Effect
- 17.4.7 Thomson Effect
- 17.4.8 Hall Effect
- 17.4.9 Magnetoresistance
- 17.4.10 Anomalous Hall Effect
- 17.5 Fermi Liquid Theory
- 17.5.1 Basic Ideas
- 17.5.2 Statistical Mechanics of Quasi-Particles
- 17.5.3 Effective Mass
- 17.5.4 Specific Heat
- 17.5.5 Fermi Liquid Parameters
- 17.5.6 Traveling Waves
- 17.5.7 Comparison with Experiment in 3He
- Problems
- References
- 18 Microscopic Theories of Conduction
- 18.1 Introduction
- 18.2 Weak Scattering Theory of Conductivity
- 18.2.1 General Formula for Relaxation Time
- 18.2.2 Matthiessen's Rule
- 18.2.3 Fluctuations
- 18.3 Metal–Insulator Transitions in Disordered Solids
- 18.3.1 Impurities and Disorder
- 18.3.2 Non-Compensated Impurities and the Mott Transition
- 18.4 Compensated Impurity Scattering and Green's Functions
- 18.4.1 Tight-Binding Models of Disordered Solids
- 18.4.2 Green's Functions
- 18.4.3 Single Impurity
- 18.4.4 Coherent Potential Approximation
- 18.5 Localization
- 18.5.1 Exact Results in One Dimension
- 18.5.2 Scaling Theory of Localization
- 18.5.3 Comparison with Experiment
- 18.6 Luttinger Liquids
- 18.6.1 Density of States
- Problems
- References
- 19 Electronics
- 19.1 Introduction
- 19.2 Metal Interfaces
- 19.2.1 Work Functions
- 19.2.2 Schottky Barrier
- 19.2.3 Contact Potentials
- 19.3 Semiconductors
- 19.3.1 Pure Semiconductors
- 19.3.2 Semiconductor in Equilibrium
- 19.3.3 Intrinsic Semiconductor
- 19.3.4 Extrinsic Semiconductor
- 19.4 Diodes and Transistors
- 19.4.1 Surface States
- 19.4.2 Semiconductor Junctions
- 19.4.3 Boltzmann Equation for Semiconductors
- 19.4.4 Detailed Theory of Rectification
- 19.4.5 Transistor
- 19.5 Inversion Layers
- 19.5.1 Heterostructures
- 19.5.2 Quantum Point Contact
- 19.5.3 Quantum Dot
- Problems
- References
- 20 Phenomenological Theory
- 20.1 Introduction
- 20.2 Maxwell's Equations
- 20.2.1 Traveling Waves
- 20.2.2 Mechanical Oscillators as Dielectric Function
- 20.3 Kramers–Kronig Relations
- 20.3.1 Application to Optical Experiments
- 20.4 The Kubo–Greenwood Formula
- 20.4.1 Born Approximation
- 20.4.2 Susceptibility
- 20.4.3 Many-Body Green Functions
- Problems
- References
- 21 Optical Properties of Semiconductors
- 21.1 Introduction
- 21.2 Cyclotron Resonance
- 21.2.1 Electron Energy Surfaces
- 21.3 Semiconductor Band Gaps
- 21.3.1 Direct Transitions
- 21.3.2 Indirect Transitions
- 21.4 Excitons
- 21.4.1 Mott–Wannier Excitons
- 21.4.2 Frenkel Excitons
- 21.4.3 Electron–Hole Liquid
- 21.5 Optoelectronics
- 21.5.1 Solar Cells
- 21.5.2 Lasers
- Problems
- References
- 22 Optical Properties of Insulators
- 22.1 Introduction
- 22.2 Polarization
- 22.2.1 Ferroelectrics
- 22.2.2 Berry phase theory of polarization
- 22.2.3 Clausius–Mossotti Relation
- 22.3 Optical Modes in Ionic Crystals
- 22.3.1 Polaritons
- 22.3.2 Polarons
- 22.3.3 Experimental Observations of Polarons
- 22.4 Point Defects and Color Centers
- 22.4.1 Vacancies
- 22.4.2 F Centers
- 22.4.3 Electron Spin Resonance and Electron Nuclear Double Resonance
- 22.4.4 Other Centers
- 22.4.5 Franck–Condon Effect
- 22.4.6 Urbach Tails
- Problems
- References
- 23 Optical Properties of Metals and Inelastic Scattering
- 23.1 Introduction
- 23.1.1 Plasma Frequency
- 23.2 Metals at Low Frequencies
- 23.2.1 Anomalous Skin Effect
- 23.3 Plasmons
- 23.3.1 Experimental Observation of Plasmons
- 23.4 Interband Transitions
- 23.5 Brillouin and Raman Scattering
- 23.5.1 Brillouin Scattering
- 23.5.2 Raman Scattering
- 23.5.3 Inelastic X-Ray Scattering
- 23.6 Photoemission
- 23.6.1 Measurement of Work Functions
- 23.6.2 Angle-Resolved Photoemission
- 23.6.3 Core-Level Photoemission and Charge-Transfer Insulators
- Problems
- References
- 23.1 Introduction
- 24 Classical Theories of Magnetism and Ordering
- 24.1 Introduction
- 24.2 Three Views of Magnetism
- 24.2.1 From Magnetic Moments
- 24.2.2 From Conductivity
- 24.2.3 From a Free Energy
- 24.3 Magnetic Dipole Moments
- 24.3.1 Spontaneous Magnetization of Ferromagnets
- 24.3.2 Ferrimagnets
- 24.3.3 Antiferromagnets
- 24.4 Mean Field Theory and the Ising Model
- 24.4.1 Domains
- 24.4.2 Hysteresis
- 24.5 Other Order–Disorder Transitions
- 24.5.1 Alloy Superlattices
- 24.5.2 Spin Glasses
- 24.6 Critical Phenomena
- 24.6.1 Landau Free Energy
- 24.6.2 Scaling Theory
- Problems
- References
- 25 Magnetism of Ions and Electrons
- 25.1 Introduction
- 25.2 Atomic Magnetism
- 25.2.1 Hund's Rules
- 25.2.2 Curie's Law
- 25.3 Magnetism of the Free-Electron Gas
- 25.3.1 Pauli Paramagnetism
- 25.3.2 Landau Diamagnetism
- 25.3.3 Aharonov–Bohm Effect
- 25.4 Tightly Bound Electrons in Magnetic Fields
- 25.5 Quantum Hall Effect
- 25.5.1 Integer Quantum Hall Effect
- 25.5.2 Fractional Quantum Hall Effect
- Problems
- References
- 26 Quantum Mechanics of Interacting Magnetic Moments
- 26.1 Introduction
- 26.2 Origin of Ferromagnetism
- 26.2.1 Heitler-London Calculation
- 26.2.2 Spin Hamiltonian
- 26.3 Heisenberg Model
- 26.3.1 Indirect Exchange and Superexchange
- 26.3.2 Ground State
- 26.3.4 Spin Waves in Antiferromagnets
- 26.3.5 Comparison with Experiment
- 26.4 Ferromagnetism in Transition Metals
- 26.4.1 Stoner Model
- 26.4.2 Calculations Within Band Theory
- 26.5 Spintronics
- 26.5.1 Giant Magnetoresistance
- 26.5.2 Spin Torque
- 26.6 Kondo Effect
- 26.6.1 Scaling Theory
- 26.7 Hubbard Model
- 26.7.1 Mean-Field Solution
- Problems
- References
- 27 Superconductivity
- 27.1 Introduction
- 27.2 Phenomenology of Superconductivity
- 27.2.1 Phenomenological Free Energy
- 27.2.2 Thermodynamics of Superconductors
- 27.2.3 Landau–Ginzburg Free Energy
- 27.2.4 Type I and Type II Superconductors
- 27.2.5 Flux Quantization
- 27.2.6 The Josephson Effect
- 27.2.7 Circuits with Josephson Junction Elements
- 27.2.8 SQUIDS
- 27.2.9 Origin of Josephson's Equations
- 27.3 Microscopic Theory of Superconductivity
- 27.3.1 Electron–Ion Interaction
- 27.3.2 Instability of the Normal State: Cooper Problem
- 27.3.3 Self-Consistent Ground State
- 27.3.4 Thermodynamics of Superconductors
- 27.3.5 Superconductor in External Magnetic Field
- 27.3.6 Derivation of Meissner Effect
- 27.3.7 Comparison with Experiment
- 27.3.8 High-Temperature Superconductors
- Problems
- References
- A Lattice Sums and Fourier Transforms
- A.1 One-Dimensional Sum
- A.2 Area Under Peaks
- A.3 Three-Dimensional Sum
- A.4 Discrete Case
- A.5 Convolution
- A.6 Using the Fast Fourier Transform
- References
- B Variational Techniques
- B.l Functionals and Functional Derivatives
- B.2 Time-Independent Schrödinger Equation
- B.3 Time-Dependent Schrödinger Equation
- B.4 Method of Steepest Descent
- References
- C Second Quantization
- C.l Rules
- C.1.1 States
- C.1.2 Operators
- C.1.3 Hamiltonians
- C.2 Derivations
- C.2.1 Bosons
- C.2.2 Fermions
- C.l Rules
UM RAFBÆKUR Á HEIMKAUP.IS
Bókahillan þín er þitt svæði og þar eru bækurnar þínar geymdar. Þú kemst í bókahilluna þína hvar og hvenær sem er í tölvu eða snjalltæki. Einfalt og þægilegt!Rafbók til eignar
Rafbók til eignar þarf að hlaða niður á þau tæki sem þú vilt nota innan eins árs frá því bókin er keypt.
Þú kemst í bækurnar hvar sem er
Þú getur nálgast allar raf(skóla)bækurnar þínar á einu augabragði, hvar og hvenær sem er í bókahillunni þinni. Engin taska, enginn kyndill og ekkert vesen (hvað þá yfirvigt).
Auðvelt að fletta og leita
Þú getur flakkað milli síðna og kafla eins og þér hentar best og farið beint í ákveðna kafla úr efnisyfirlitinu. Í leitinni finnur þú orð, kafla eða síður í einum smelli.
Glósur og yfirstrikanir
Þú getur auðkennt textabrot með mismunandi litum og skrifað glósur að vild í rafbókina. Þú getur jafnvel séð glósur og yfirstrikanir hjá bekkjarsystkinum og kennara ef þeir leyfa það. Allt á einum stað.
Hvað viltu sjá? / Þú ræður hvernig síðan lítur út
Þú lagar síðuna að þínum þörfum. Stækkaðu eða minnkaðu myndir og texta með multi-level zoom til að sjá síðuna eins og þér hentar best í þínu námi.
Fleiri góðir kostir
- Þú getur prentað síður úr bókinni (innan þeirra marka sem útgefandinn setur)
- Möguleiki á tengingu við annað stafrænt og gagnvirkt efni, svo sem myndbönd eða spurningar úr efninu
- Auðvelt að afrita og líma efni/texta fyrir t.d. heimaverkefni eða ritgerðir
- Styður tækni sem hjálpar nemendum með sjón- eða heyrnarskerðingu
- Gerð : 208
- Höfundur : 19358
- Útgáfuár : 2010
- Leyfi : 379