1. Bækur og afþreying
  2. Bækur og kort
  3. Rafbækur
  4. Stærðfræði og tölfræði
  5. Stærðfræði

Introduction to Probability Models

Vörumerki: Elsevier
Vörunúmer: 9780128143476
Rafræn bók. Uppl. sendar á netfangið þitt eftir kaup

Veldu vöru

14.990 kr.
Fá vöru senda með tölvupósti

Introduction to Probability Models

Veldu vöru

Rafræn bók. Uppl. sendar á netfangið þitt eftir kaup
Rafbók til eignar. Rafbók til eignar þarf að hlaða niður á þau tæki sem þú vilt nota innan eins árs frá því bókin er keypt. Útgáfa: 12
Fá vöru senda með tölvupósti

Efnisyfirlit

  • Introduction to Probability Models
  • Copyright
  • Contents
  • Preface
    • New to This Edition
    • Course
    • Examples and Exercises
    • Organization
    • Acknowledgments
  • 1 Introduction to Probability Theory
    • 1.1 Introduction
    • 1.2 Sample Space and Events
    • 1.3 Probabilities De?ned on Events
    • 1.4 Conditional Probabilities
    • 1.5 Independent Events
    • 1.6 Bayes' Formula
    • 1.7 Probability Is a Continuous Event Function
    • Exercises
    • References
  • 2 Random Variables
    • 2.1 Random Variables
    • 2.2 Discrete Random Variables
      • 2.2.1 The Bernoulli Random Variable
      • 2.2.2 The Binomial Random Variable
      • 2.2.3 The Geometric Random Variable
      • 2.2.4 The Poisson Random Variable
    • 2.3 Continuous Random Variables
      • 2.3.1 The Uniform Random Variable
      • 2.3.2 Exponential Random Variables
      • 2.3.3 Gamma Random Variables
      • 2.3.4 Normal Random Variables
    • 2.4 Expectation of a Random Variable
      • 2.4.1 The Discrete Case
      • 2.4.2 The Continuous Case
      • 2.4.3 Expectation of a Function of a Random Variable
    • 2.5 Jointly Distributed Random Variables
      • 2.5.1 Joint Distribution Functions
      • 2.5.2 Independent Random Variables
      • 2.5.3 Covariance and Variance of Sums of Random Variables
      • Properties of Covariance
      • 2.5.4 Joint Probability Distribution of Functions of Random Variables
    • 2.6 Moment Generating Functions
      • 2.6.1 The Joint Distribution of the Sample Mean and Sample Variance from a Normal Population
    • 2.7 Limit Theorems
    • 2.8 Proof of the Strong Law of Large Numbers
    • 2.9 Stochastic Processes
    • Exercises
    • References
  • 3 Conditional Probability and Conditional Expectation
    • 3.1 Introduction
    • 3.2 The Discrete Case
    • 3.3 The Continuous Case
    • 3.4 Computing Expectations by Conditioning
      • 3.4.1 Computing Variances by Conditioning
    • 3.5 Computing Probabilities by Conditioning
    • 3.6 Some Applications
      • 3.6.1 A List Model
      • 3.6.2 A Random Graph
      • 3.6.3 Uniform Priors, Polya's Urn Model, and Bose-Einstein Statistics
      • 3.6.4 Mean Time for Patterns
      • 3.6.5 The k-Record Values of Discrete Random Variables
      • 3.6.6 Left Skip Free Random Walks
    • 3.7 An Identity for Compound Random Variables
      • 3.7.1 Poisson Compounding Distribution
      • 3.7.2 Binomial Compounding Distribution
      • 3.7.3 A Compounding Distribution Related to the Negative Binomial
    • Exercises
  • 4 Markov Chains
    • 4.1 Introduction
    • 4.2 Chapman-Kolmogorov Equations
    • 4.3 Classi?cation of States
    • 4.4 Long-Run Proportions and Limiting Probabilities
      • 4.4.1 Limiting Probabilities
    • 4.5 Some Applications
      • 4.5.1 The Gambler's Ruin Problem
      • 4.5.2 A Model for Algorithmic Ef?ciency
      • 4.5.3 Using a Random Walk to Analyze a Probabilistic Algorithm for the Satis?ability Problem
    • 4.6 Mean Time Spent in Transient States
    • 4.7 Branching Processes
    • 4.8 Time Reversible Markov Chains
    • 4.9 Markov Chain Monte Carlo Methods
    • 4.10 Markov Decision Processes
    • 4.11 Hidden Markov Chains
      • 4.11.1 Predicting the States
    • Exercises
    • References
  • 5 The Exponential Distribution and the Poisson Process
    • 5.1 Introduction
    • 5.2 The Exponential Distribution
      • 5.2.1 De?nition
      • 5.2.2 Properties of the Exponential Distribution
      • 5.2.3 Further Properties of the Exponential Distribution
      • 5.2.4 Convolutions of Exponential Random Variables
      • 5.2.5 The Dirichlet Distribution
    • 5.3 The Poisson Process
      • 5.3.1 Counting Processes
      • 5.3.2 De?nition of the Poisson Process
      • 5.3.3 Further Properties of Poisson Processes
      • 5.3.4 Conditional Distribution of the Arrival Times
      • 5.3.5 Estimating Software Reliability
    • 5.4 Generalizations of the Poisson Process
      • 5.4.1 Nonhomogeneous Poisson Process
      • 5.4.2 Compound Poisson Process
      • Examples of Compound Poisson Processes
      • 5.4.3 Conditional or Mixed Poisson Processes
    • 5.5 Random Intensity Functions and Hawkes Processes
    • Exercises
    • References
  • 6 Continuous-Time Markov Chains
    • 6.1 Introduction
    • 6.2 Continuous-Time Markov Chains
    • 6.3 Birth and Death Processes
    • 6.4 The Transition Probability Function Pij(t)
    • 6.5 Limiting Probabilities
    • 6.6 Time Reversibility
    • 6.7 The Reversed Chain
    • 6.8 Uniformization
    • 6.9 Computing the Transition Probabilities
    • Exercises
    • References
  • 7 Renewal Theory and Its Applications
    • 7.1 Introduction
    • 7.2 Distribution of N(t)
    • 7.3 Limit Theorems and Their Applications
    • 7.4 Renewal Reward Processes
    • 7.5 Regenerative Processes
      • 7.5.1 Alternating Renewal Processes
    • 7.6 Semi-Markov Processes
    • 7.7 The Inspection Paradox
    • 7.8 Computing the Renewal Function
    • 7.9 Applications to Patterns
      • 7.9.1 Patterns of Discrete Random Variables
      • 7.9.2 The Expected Time to a Maximal Run of Distinct Values
      • 7.9.3 Increasing Runs of Continuous Random Variables
    • 7.10 The Insurance Ruin Problem
    • Exercises
    • References
  • 8 Queueing Theory
    • 8.1 Introduction
    • 8.2 Preliminaries
      • 8.2.1 Cost Equations
      • 8.2.2 Steady-State Probabilities
    • 8.3 Exponential Models
      • 8.3.1 A Single-Server Exponential Queueing System
      • 8.3.2 A Single-Server Exponential Queueing System Having Finite Capacity
      • 8.3.3 Birth and Death Queueing Models
      • 8.3.4 A Shoe Shine Shop
      • 8.3.5 Queueing Systems with Bulk Service
    • 8.4 Network of Queues
      • 8.4.1 Open Systems
      • 8.4.2 Closed Systems
    • 8.5 The System M/G/1
      • 8.5.1 Preliminaries: Work and Another Cost Identity
      • 8.5.2 Application of Work to M/G/1
      • 8.5.3 Busy Periods
    • 8.6 Variations on the M/G/1
      • 8.6.1 The M/G/1 with Random-Sized Batch Arrivals
      • 8.6.2 Priority Queues
      • 8.6.3 An M/G/1 Optimization Example
      • 8.6.4 The M/G/1 Queue with Server Breakdown
    • 8.7 The Model G/M/1
      • 8.7.1 The G/M/1 Busy and Idle Periods
    • 8.8 A Finite Source Model
    • 8.9 Multiserver Queues
      • 8.9.1 Erlang's Loss System
      • 8.9.2 The M/M/k Queue
      • 8.9.3 The G/M/k Queue
      • 8.9.4 The M/G/k Queue
    • Exercises
  • 9 Reliability Theory
    • 9.1 Introduction
    • 9.2 Structure Functions
      • 9.2.1 Minimal Path and Minimal Cut Sets
    • 9.3 Reliability of Systems of Independent Components
    • 9.4 Bounds on the Reliability Function
      • 9.4.1 Method of Inclusion and Exclusion
      • 9.4.2 Second Method for Obtaining Bounds on r(p)
    • 9.5 System Life as a Function of Component Lives
    • 9.6 Expected System Lifetime
      • 9.6.1 An Upper Bound on the Expected Life of a Parallel System
    • 9.7 Systems with Repair
      • 9.7.1 A Series Model with Suspended Animation
    • Exercises
    • References
  • 10 Brownian Motion and Stationary Processes
    • 10.1 Brownian Motion
    • 10.2 Hitting Times, Maximum Variable, and the Gambler's Ruin Problem
    • 10.3 Variations on Brownian Motion
      • 10.3.1 Brownian Motion with Drift
      • 10.3.2 Geometric Brownian Motion
    • 10.4 Pricing Stock Options
      • 10.4.1 An Example in Options Pricing
      • 10.4.2 The Arbitrage Theorem
      • 10.4.3 The Black-Scholes Option Pricing Formula
    • 10.5 The Maximum of Brownian Motion with Drift
    • 10.6 White Noise
    • 10.7 Gaussian Processes
    • 10.8 Stationary and Weakly Stationary Processes
    • 10.9 Harmonic Analysis of Weakly Stationary Processes
    • Exercises
    • References
  • 11 Simulation
    • 11.1 Introduction
    • 11.2 General Techniques for Simulating Continuous Random Variables
      • 11.2.1 The Inverse Transformation Method
      • 11.2.2 The Rejection Method
      • 11.2.3 The Hazard Rate Method
        • Hazard Rate Method for Generating S: ?s(t)=? (t)
    • 11.3 Special Techniques for Simulating Continuous Random Variables
      • 11.3.1 The Normal Distribution
      • 11.3.2 The Gamma Distribution
      • 11.3.3 The Chi-Squared Distribution
      • 11.3.4 The Beta (n, m) Distribution
      • 11.3.5 The Exponential Distribution-The Von Neumann Algorithm
    • 11.4 Simulating from Discrete Distributions
      • 11.4.1 The Alias Method
    • 11.5 Stochastic Processes
      • 11.5.1 Simulating a Nonhomogeneous Poisson Process
        • Method 1. Sampling a Poisson Process
        • Method 2. Conditional Distribution of the Arrival Times
        • Method 3. Simulating the Event Times
      • 11.5.2 Simulating a Two-Dimensional Poisson Process
    • 11.6 Variance Reduction Techniques
      • 11.6.1 Use of Antithetic Variables
      • 11.6.2 Variance Reduction by Conditioning
      • 11.6.3 Control Variates
      • 11.6.4 Importance Sampling
    • 11.7 Determining the Number of Runs
    • 11.8 Generating from the Stationary Distribution of a Markov Chain
      • 11.8.1 Coupling from the Past
      • 11.8.2 Another Approach
    • Exercises
    • References
  • 12 Coupling
    • 12.1 A Brief Introduction
    • 12.2 Coupling and Stochastic Order Relations
    • 12.3 Stochastic Ordering of Stochastic Processes
    • 12.4 Maximum Couplings, Total Variation Distance, and the Coupling Identity
    • 12.5 Applications of the Coupling Identity
      • 12.5.1 Applications to Markov Chains
    • 12.6 Coupling and Stochastic Optimization
    • 12.7 Chen-Stein Poisson Approximation Bounds
    • Exercises
  • Solutions to Starred Exercises
    • Chapter 1
    • Chapter 2
    • Chapter 3
    • Chapter 4
    • Chapter 5
    • Chapter 6
    • Chapter 7
    • Chapter 8
    • Chapter 9
    • Chapter 10
    • Chapter 11
  • Index
  • Back Cover

UM RAFBÆKUR Á HEIMKAUP.IS

Bókahillan þín er þitt svæði og þar eru bækurnar þínar geymdar. Þú kemst í bókahilluna þína hvar og hvenær sem er í tölvu eða snjalltæki. Einfalt og þægilegt!

Rafbók til eignar
Rafbók til eignar þarf að hlaða niður á þau tæki sem þú vilt nota innan eins árs frá því bókin er keypt.

Þú kemst í bækurnar hvar sem er
Þú getur nálgast allar raf(skóla)bækurnar þínar á einu augabragði, hvar og hvenær sem er í bókahillunni þinni. Engin taska, enginn kyndill og ekkert vesen (hvað þá yfirvigt).

Auðvelt að fletta og leita
Þú getur flakkað milli síðna og kafla eins og þér hentar best og farið beint í ákveðna kafla úr efnisyfirlitinu. Í leitinni finnur þú orð, kafla eða síður í einum smelli.

Glósur og yfirstrikanir
Þú getur auðkennt textabrot með mismunandi litum og skrifað glósur að vild í rafbókina. Þú getur jafnvel séð glósur og yfirstrikanir hjá bekkjarsystkinum og kennara ef þeir leyfa það. Allt á einum stað.

Hvað viltu sjá? / Þú ræður hvernig síðan lítur út
Þú lagar síðuna að þínum þörfum. Stækkaðu eða minnkaðu myndir og texta með multi-level zoom til að sjá síðuna eins og þér hentar best í þínu námi.



Fleiri góðir kostir
- Þú getur prentað síður úr bókinni (innan þeirra marka sem útgefandinn setur)
- Möguleiki á tengingu við annað stafrænt og gagnvirkt efni, svo sem myndbönd eða spurningar úr efninu
- Auðvelt að afrita og líma efni/texta fyrir t.d. heimaverkefni eða ritgerðir
- Styður tækni sem hjálpar nemendum með sjón- eða heyrnarskerðingu
Eiginleikar
Vörumerki: Elsevier
Vörunúmer: 9780128143476
Taka af óskalista
Setja á óskalista

Umsagnir

Engar umsagnir
Lesa fleiri umsagnir
14.990 kr.