Fundamentals of Geotechnical Engineering, International Edition

Námskeið BT JTÆ1003 Jarðtækni og hagnýt jarðfræði Lýsing:Discover the essential components of...
Rafræn bók. Uppl. sendar á netfangið þitt eftir kaup
9.990 kr.

Fundamentals of Geotechnical Engineering, International Edition

Rafræn bók. Uppl. sendar á netfangið þitt eftir kaup
Rafbók til eignar. Rafbók til eignar þarf að hlaða niður á þau tæki sem þú vilt nota innan eins árs frá því bókin er keypt. Útgáfa: 5

Efnisyfirlit

  • Contents
  • Preface
  • Ch 1: Geotechnical Engineering-From the Beginning
    • 1.1 Introduction
    • 1.2 Geotechnical Engineering Prior to the 18th Century
    • 1.3 Preclassical Period of Soil Mechanics (1700-1776)
    • 1.4 Classical Soil Mechanics-Phase I (1776-1856)
    • 1.5 Classical Soil Mechanics-Phase II (1856-1910)
    • 1.6 Modern Soil Mechanics (1910-1927)
    • 1.7 Geotechnical Engineering after 1927
    • 1.8 End of an Era
    • References
  • Ch 2: Soil Deposits-Origin, Grain-Size, and Shape
    • 2.1 Introduction
    • 2.2 Rock Cycle and the Origin of Soil
    • 2.3 Soil Deposits-General
    • 2.4 Residual Soil
    • 2.5 Gravity-Transported Soil
    • 2.6 Alluvial Deposits
    • 2.7 Lacustrine Deposits
    • 2.8 Glacial Deposits
    • 2.9 Aeolian Soil Deposits
    • 2.10 Organic Soil
    • 2.11 Soil-Grain Size
    • 2.12 Clay Minerals
    • 2.13 Specific Gravity (Gs)
    • 2.14 Mechanical Analysis of Soil
    • 2.15 Sieve Analysis
    • 2.16 Hydrometer Analysis
    • 2.17 Effective Size, Uniformity Coefficient, and Coefficient of Gradation
    • 2.18 Grain Shape
    • 2.19 Summary
    • Problems
    • Critical Thinking Problem
    • References
  • Ch 3: Weight-Volume Relationships and Plasticity
    • 3.1 Introduction
    • 3.2 Weight-Volume Relationships
    • 3.3 Relationships among Unit Weight, Void Ratio, Moisture Content, and Specific Gravity
    • 3.4 Relationships among Unit Weight, Porosity, and Moisture Content
    • 3.5 Various Unit Weight Relationships
    • 3.6 Relative Density
    • 3.7 Consistency of Soil
    • 3.8 Activity
    • 3.9 Liquidity Index
    • 3.10 Plasticity Chart
    • 3.11 Summary
    • Problems
    • Critical Thinking Problems
    • References
  • Ch 4: Soil Classification
    • 4.1 Introduction
    • 4.2 AASHTO Classification System
    • 4.3 Unified Soil Classification System (USCS)
    • 4.4 Visual Identification of Soils
    • 4.5 Summary
    • Problems
    • Critical Thinking Problems
    • References
  • Ch 5: Soil Compaction
    • 5.1 Introduction
    • 5.2 Compaction-General Principles
    • 5.3 Standard Proctor Test
    • 5.4 Factors Affecting Compaction
    • 5.5 Modified Proctor Test
    • 5.6 Empirical Relationships
    • 5.7 Field Compaction
    • 5.8 Specifications for Field Compaction
    • 5.9 Determination of Field Unit Weight after Compaction
    • 5.10 Effect of Compaction on Cohesive Soil Properties
    • 5.11 Other Ground Improvement Methods
    • 5.12 Summary
    • Problems
    • Critical Thinking Problem
    • References
  • Ch 6: Hydraulic Conductivity
    • 6.1 Introduction
    • 6.2 Bernoulli's Equation
    • 6.3 Darcy's Law
    • 6.4 Hydraulic Conductivity
    • 6.5 Laboratory Determination of Hydraulic Conductivity
    • 6.6 Empirical Relations for Hydraulic Conductivity
    • 6.7 Equivalent Hydraulic Conductivity in Stratified Soil
    • 6.8 Permeability Test in the Field by Pumping from Wells
    • 6.9 Summary
    • Problems
    • Critical Thinking Problem
    • References
  • Ch 7: Seepage
    • 7.1 Introduction
    • 7.2 Laplace's Equation of Continuity
    • 7.3 Flow Nets
    • 7.4 Seepage Calculation from a Flow Net
    • 7.5 Flow Nets in Anisotropic Soil
    • 7.6 Summary
    • Problems
    • Critical Thinking Problem
  • Ch 8: Stresses in a Soil Mass
    • 8.1 Introduction
    • 8.2 Stresses in Saturated Soil without Seepage
    • 8.3 Stresses in Saturated Soil with Seepage
    • 8.4 Seepage Force
    • 8.5 Heaving in Soil Due to Flow around Sheet Piles
    • 8.6 Stress Caused by a Point Load
    • 8.7 Vertical Stress Caused by a Line Load
    • 8.8 Vertical Stress below a Uniformly Loaded Circular Area
    • 8.9 Vertical Stress Caused by a Rectangularly Loaded Area
    • 8.10 Summary
    • Problems
    • Critical Thinking Problems
    • References
  • Ch 9: Consolidation
    • 9.1 Introduction
    • 9.2 Fundamentals of Consolidation
    • 9.3 One-Dimensional Laboratory Consolidation Test
    • 9.4 Void Ratio-Pressure Plots
    • 9.5 Normally Consolidated and Overconsolidated Clays
    • 9.6 Effect of Disturbance on Void Ratio-Pressure Relationship
    • 9.7 Calculation of Settlement from One-Dimensional Primary Consolidation
    • 9.8 Compression Index (Cc) and Swell Index (Cs)
    • 9.9 Settlement from Secondary Consolidation
    • 9.10 Time Rate of Consolidation
    • 9.11 Coefficient of Consolidation
    • 9.12 Calculation of Primary Consolidation Settlement under a Foundation
    • 9.13 Skempton-Bjerrum Modification for Consolidation Settlement
    • 9.14 Effects of Initial Excess Pore Pressure Distribution of U-Tv Relationship
    • 9.15 Construction Time Correction of Consolidation Settlement
    • 9.16 Summary
    • Problems
    • Critical Thinking Problems
    • References
  • Ch 10: Shear Strength of Soil
    • 10.1 Introduction
    • 10.2 Mohr-Coulomb Failure Criteria
    • 10.3 Inclination of the Plane of Failure Caused by Shear
    • 10.4 Direct Shear Test
    • 10.5 Triaxial Shear Test
    • 10.6 Consolidated-Drained Test
    • 10.7 Consolidated-Undrained Test
    • 10.8 Unconsolidated-Undrained Test
    • 10.9 Unconfined Compression Test on Saturated Clay
    • 10.10 Selection of Shear Strength Parameters
    • 10.11 Sensitivity and Thixotropy of Clay
    • 10.12 Anisotropy in Undrained Shear Strength
    • 10.13 Summary
    • Problems
    • Critical Thinking Problems
    • References
  • Ch 11: Ground Improvement
    • 11.1 Introduction
    • 11.2 Lime Stabilization
    • 11.3 Cement Stabilization
    • 11.4 Fly-Ash Stabilization
    • 11.5 Vibroflotation
    • 11.6 Dynamic Compaction
    • 11.7 Blasting
    • 11.8 Precompression
    • 11.9 Sand Drains
    • 11.10 Summary
    • Problems
    • Critical Thinking Problem
    • References
  • Ch 12: Subsurface Exploration
    • 12.1 Introduction
    • 12.2 Subsurface Exploration Program
    • 12.3 Exploratory Borings in the Field
    • 12.4 Procedures for Sampling Soil
    • 12.5 Split-Spoon Sampling and Standard Penetration Test
    • 12.6 Sampling with Thin Wall Tube
    • 12.7 Observation of Water Levels
    • 12.8 Vane Shear Test
    • 12.9 Cone Penetration Test
    • 12.10 Pressuremeter Test (PMT)
    • 12.11 Dilatometer Test
    • 12.12 Coring of Rocks
    • 12.13 Preparation of Boring Logs
    • 12.14 Geophysical Exploration
    • 12.15 Soil Exploration Report
    • 12.16 Field Instrumentation
    • 12.17 Summary
    • Problems
    • Critical Thinking Problem
    • References
  • Ch 13: Slope Stability
    • 13.1 Introduction
    • 13.2 Factor of Safety
    • 13.3 Stability of Infinite Slopes
    • 13.4 Finite Slopes
    • 13.5 Analysis of Finite Slope with Cylindrical Failure Surface-General
    • 13.6 Mass Procedure of Stability Analysis (Circularly Cylindrical Failure Surface)
    • 13.7 Method of Slices
    • 13.8 Bishop's Simplified Method of Slices
    • 13.9 Analysis of Simple Slopes with Steady-State Seepage
    • 13.10 Mass Procedure for Stability of Clay Slope with Earthquake Forces
    • 13.11 Summary
    • Problems
    • Critical Thinking Problems
    • References
  • Ch 14: Lateral Earth Pressure
    • 14.1 Introduction
    • 14.2 Earth Pressure at Rest
    • 14.3 Rankine's Theory of Active and Passive Earth Pressures
    • 14.4 Diagrams for Lateral Earth Pressure Distribution against Retaining Walls
    • 14.5 Rankine Active Pressure with Sloping Granular Backfill
    • 14.6 Coulomb's Earth Pressure Theory-Retaining Walls with Friction
    • 14.7 Passive Pressure Assuming Curved Failure Surface in Soil
    • 14.8 Summary
    • Problems
    • Critical Thinking Problems
    • References
  • Ch 15: Retaining Walls, Braced Cuts, and Sheet Pile Walls
    • 15.1 Introduction
    • 15.2 Retaining Walls-General
    • 15.3 Proportioning Retaining Walls
    • 15.4 Application of Lateral Earth Pressure Theories to Design
    • 15.5 Check for Overturning
    • 15.6 Check for Sliding along the Base
    • 15.7 Check for Bearing Capacity Failure
    • 15.8 Mechanically Stabilized Earth
    • 15.9 General Design Considerations
    • 15.10 Retaining Walls with Metallic Strip Reinforcement
    • 15.11 Step-by-Step-Design Procedure Using Metallic Strip Reinforcement
    • 15.12 Retaining Walls with Geotextile Reinforcement
    • 15.13 Retaining Walls with Geogrid Reinforcement
    • 15.14 Braced Cuts-General
    • 15.15 Lateral Earth Pressure in Braced Cuts
    • 15.16 Soil Parameters for Cuts in Layered Soil
    • 15.17 Design of Various Components of a Braced Cut
    • 15.18 Heave of the Bottom of a Cut in Clay
    • 15.19 Lateral Yielding of Sheet Piles and Ground Settlement
    • 15.20 Cantilever Sheet Pile Wall in Granular Soils (c' = 0)
    • 15.21 Cantilever Sheet Piles in Cohesive Soils
    • 15.22 Anchored Sheet Pile Wall
    • 15.23 Deadman Anchor-A Simplified Approach
    • 15.24 Summary
    • Problems
    • Critical Thinking Problems
    • References
  • Ch 16: Shallow Foundations-Bearing Capacity
    • 16.1 Introduction
    • 16.2 Ultimate Bearing Capacity of Shallow Foundations-General Concepts
    • 16.3 Terzaghi's Ultimate Bearing Capacity Theory
    • 16.4 Modification to Terzaghi's Bearing Capacity Equation
    • 16.5 Modification of Bearing Capacity Equations for Water Table
    • 16.6 The Factor of Safety
    • 16.7 Eccentrically Loaded Foundations (One-Way Eccentricity)
    • 16.8 Reduction Factor Method for Eccentrically Loaded Strip Foundation on Granular Soil
    • 16.9 Strip Foundation under Eccentrically Inclined Load
    • 16.10 Foundations with Two-Way Eccentricity
    • 16.11 Ultimate Bearing Capacity with Earthquake Condition
    • 16.12 Mat Foundations-Common Types
    • 16.13 Bearing Capacity of Mat Foundations
    • 16.14 Compensated Foundations
    • 16.15 Summary
    • Problems
    • Critical Thinking Problems
    • References
  • Ch 17: Settlement of Shallow Foundations
    • 17.1 Introduction
    • 17.2 Elastic Settlement of Foundations on Saturated Clay Soils (us = 0.5)
    • 17.3 Elastic Settlement Based on Theory of Elasticity (Drained Soil)
    • 17.4 Range of Material Parameters for Computing Elastic Settlement
    • 17.5 Improved Method for Settlement Calculation in Granular Soil
    • 17.6 Settlement of Sandy Soil: Use of Strain Influence Factor
    • 17.7 Allowable Bearing Pressure for Spread Footing in Sand Based on Settlement Consideration
    • 17.8 Allowable Bearing Pressure of Mat Foundation in Sand
    • 17.9 Effects of Water Table Rise on Elastic Settlement in Granular Soils
    • 17.10 Summary
    • Problems
    • Critical Thinking Problems
    • References
  • Ch 18: Pile Foundations
    • 18.1 Introduction
    • 18.2 Need for Pile Foundations
    • 18.3 Types of Piles and Their Structural Characteristics
    • 18.4 Estimation of Pile Length
    • 18.5 Installation of Piles
    • 18.6 Load Transfer Mechanism
    • 18.7 Equations for Estimation of Pile Capacity
    • 18.8 Load Carrying Capacity of Pile Point, Qp
    • 18.9 Frictional Resistance, Qs
    • 18.10 Allowable Pile Capacity
    • 18.11 Load-Carrying Capacity of Pile Point Resting on Rock
    • 18.12 Elastic Settlement of Piles
    • 18.13 Pile Load Tests
    • 18.14 Pile-Driving Formulas
    • 18.15 Negative Skin Friction
    • 18.16 Group Piles-Efficiency
    • 18.17 Elastic Settlement of Group Piles
    • 18.18 Consolidation Settlement of Group Piles
    • 18.19 Summary
    • Problems
    • Critical Thinking Problem
    • References
  • Ch 19: Drilled Shaft
    • 19.1 Introduction
    • 19.2 Types of Drilled Shafts
    • 19.3 Construction Procedures
    • 19.4 Estimation of Load-Bearing Capacity
    • 19.5 Drilled Shafts in Sand-Net Ultimate Load
    • 19.6 Drilled Shafts in Clay-Net Ultimate Load
    • 19.7 Settlement of Drilled Shafts at Working Load
    • 19.8 Load-Bearing Capacity Based on Settlement
    • 19.9 Summary
    • Problems
    • Critical Thinking Problem
    • References
  • Ch 20: Load and Resistance Factor Design (LRFD)
    • 20.1 Introduction
    • 20.2 Design Philosophy
    • 20.3 Allowable Stress Design (ASD)
    • 20.4 Limit State Design (LSD) and Partial Safety Factors
    • 20.5 Summary
    • Problems
    • References
  • Appendix A: Geosynthetics
  • Answers to Selected Problems
  • Index

UM RAFBÆKUR Á HEIMKAUP.IS

Bókahillan þín er þitt svæði og þar eru bækurnar þínar geymdar. Þú kemst í bókahilluna þína hvar og hvenær sem er í tölvu eða snjalltæki. Einfalt og þægilegt!

Rafbók til eignar
Rafbók til eignar þarf að hlaða niður á þau tæki sem þú vilt nota innan eins árs frá því bókin er keypt.

Þú kemst í bækurnar hvar sem er
Þú getur nálgast allar raf(skóla)bækurnar þínar á einu augabragði, hvar og hvenær sem er í bókahillunni þinni. Engin taska, enginn kyndill og ekkert vesen (hvað þá yfirvigt).

Auðvelt að fletta og leita
Þú getur flakkað milli síðna og kafla eins og þér hentar best og farið beint í ákveðna kafla úr efnisyfirlitinu. Í leitinni finnur þú orð, kafla eða síður í einum smelli.

Glósur og yfirstrikanir
Þú getur auðkennt textabrot með mismunandi litum og skrifað glósur að vild í rafbókina. Þú getur jafnvel séð glósur og yfirstrikanir hjá bekkjarsystkinum og kennara ef þeir leyfa það. Allt á einum stað.

Hvað viltu sjá? / Þú ræður hvernig síðan lítur út
Þú lagar síðuna að þínum þörfum. Stækkaðu eða minnkaðu myndir og texta með multi-level zoom til að sjá síðuna eins og þér hentar best í þínu námi.



Fleiri góðir kostir
- Þú getur prentað síður úr bókinni (innan þeirra marka sem útgefandinn setur)
- Möguleiki á tengingu við annað stafrænt og gagnvirkt efni, svo sem myndbönd eða spurningar úr efninu
- Auðvelt að afrita og líma efni/texta fyrir t.d. heimaverkefni eða ritgerðir
- Styður tækni sem hjálpar nemendum með sjón- eða heyrnarskerðingu
Eiginleikar

Umsagnir

Engar umsagnir
Lesa fleiri umsagnir
9.990 kr.